Topological, metric and fractal properties of probability distributions on the set of incomplete sums of positive series
We study the structure, topological, metric and fractal properties of the distribution of random incomplete sum of the convergent positive series with independent terms under certain conditions on the rate of convergence of series and on the distributions of its terms. We also study the behaviour of...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4490 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Topological, metric and fractal properties of probability distributions on the set of incomplete sums of positive series / M.V. Pratsiovytyi, O.Yu. Feshchenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 205-224. — Бібліогр.: 27 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We study the structure, topological, metric and fractal properties of the distribution of random incomplete sum of the convergent positive series with independent terms under certain conditions on the rate of convergence of series and on the distributions of its terms. We also study the behaviour of the absolute value of the characteristic function of this random variable at infinity and the fractal dimension preservation by its distribution function. |
---|