Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution f...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4497 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-4497 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-44972009-11-20T12:00:40Z Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension Torbin, G. The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension. 2007 Article Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4497 en Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension. |
format |
Article |
author |
Torbin, G. |
spellingShingle |
Torbin, G. Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
author_facet |
Torbin, G. |
author_sort |
Torbin, G. |
title |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_short |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_full |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_fullStr |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_full_unstemmed |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_sort |
probability distributions with independent q-symbols and transformations preserving the hausdorff dimension |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/4497 |
citation_txt |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ. |
work_keys_str_mv |
AT torbing probabilitydistributionswithindependentqsymbolsandtransformationspreservingthehausdorffdimension |
first_indexed |
2023-03-24T08:30:25Z |
last_indexed |
2023-03-24T08:30:25Z |
_version_ |
1796139186811568128 |