Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension

The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution f...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Torbin, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4497
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4497
record_format dspace
spelling irk-123456789-44972009-11-20T12:00:40Z Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension Torbin, G. The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension. 2007 Article Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4497 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension.
format Article
author Torbin, G.
spellingShingle Torbin, G.
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
author_facet Torbin, G.
author_sort Torbin, G.
title Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
title_short Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
title_full Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
title_fullStr Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
title_full_unstemmed Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
title_sort probability distributions with independent q-symbols and transformations preserving the hausdorff dimension
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/4497
citation_txt Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ.
work_keys_str_mv AT torbing probabilitydistributionswithindependentqsymbolsandtransformationspreservingthehausdorffdimension
first_indexed 2023-03-24T08:30:25Z
last_indexed 2023-03-24T08:30:25Z
_version_ 1796139186811568128