One example of a random change of time that transforms a generalized diffusion process into an ordinary one
We propose a random change of time for a class of generalized diffusion processes such that the corresponding stochastic differential equation (with generalized coefficients) is transformed into an ordinary one (its coefficients are some non-generalized functions). It turns out that the latter stoc...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4502 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | One example of a random change of time that transforms a generalized diffusion process into an ordinary one / O.V. Aryasova, M.I. Portenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 3. — С. 12–21. — Бібліогр.: 5 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We propose a random change of time for a class of generalized diffusion processes such
that the corresponding stochastic differential equation (with generalized coefficients) is transformed into an ordinary one (its coefficients are some non-generalized functions). It turns out that the latter stochastic differential equation has no property of the (weak) uniqueness of a solution. |
---|