Local limit theorem for triangular array of random variables
For a triangular array of random variables {Xk,n, k = 1, . . . , cn; n belongs N} such that, for every n, the variables X1,n, . . .,Xcn,n are independent and identically distributed, the local limit theorem for the variables Sn = X1,n + · · · + Xcn,n is established.
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4506 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Local limit theorem for triangular array of random variables / I.A. Korchinsky, A.M. Kulik // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 3. — С. 48–54. — Бібліогр.: 3 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-4506 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-45062009-11-20T12:00:58Z Local limit theorem for triangular array of random variables Korchinsky, I.A. Kulik, A.M. For a triangular array of random variables {Xk,n, k = 1, . . . , cn; n belongs N} such that, for every n, the variables X1,n, . . .,Xcn,n are independent and identically distributed, the local limit theorem for the variables Sn = X1,n + · · · + Xcn,n is established. 2007 Article Local limit theorem for triangular array of random variables / I.A. Korchinsky, A.M. Kulik // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 3. — С. 48–54. — Бібліогр.: 3 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4506 519.21 en Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For a triangular array of random variables {Xk,n, k = 1, . . . , cn; n belongs N} such that, for every n, the variables X1,n, . . .,Xcn,n are independent and identically distributed, the local limit theorem for the variables Sn = X1,n + · · · + Xcn,n is established. |
format |
Article |
author |
Korchinsky, I.A. Kulik, A.M. |
spellingShingle |
Korchinsky, I.A. Kulik, A.M. Local limit theorem for triangular array of random variables |
author_facet |
Korchinsky, I.A. Kulik, A.M. |
author_sort |
Korchinsky, I.A. |
title |
Local limit theorem for triangular array of random variables |
title_short |
Local limit theorem for triangular array of random variables |
title_full |
Local limit theorem for triangular array of random variables |
title_fullStr |
Local limit theorem for triangular array of random variables |
title_full_unstemmed |
Local limit theorem for triangular array of random variables |
title_sort |
local limit theorem for triangular array of random variables |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/4506 |
citation_txt |
Local limit theorem for triangular array of random variables / I.A. Korchinsky, A.M. Kulik // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 3. — С. 48–54. — Бібліогр.: 3 назв.— англ. |
work_keys_str_mv |
AT korchinskyia locallimittheoremfortriangulararrayofrandomvariables AT kulikam locallimittheoremfortriangulararrayofrandomvariables |
first_indexed |
2023-03-24T08:30:27Z |
last_indexed |
2023-03-24T08:30:27Z |
_version_ |
1796139187758432256 |