2025-02-23T09:48:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-4508%22&qt=morelikethis&rows=5
2025-02-23T09:48:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-4508%22&qt=morelikethis&rows=5
2025-02-23T09:48:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:48:15-05:00 DEBUG: Deserialized SOLR response
Local time as an element of the Sobolev space
For a centered Gaussian random ?eld taking its values in R^d, we investigate the existence of a local time as a generalized functional, i.e an element of some Sobolev space. We give the sfficient condition for such an existence in terms of the field covariation and apply it in several examples: the...
Saved in:
Main Author: | Rudenko, A.V. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2007
|
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/4508 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T09:48:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-4508%22&qt=morelikethis
2025-02-23T09:48:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-4508%22&qt=morelikethis
2025-02-23T09:48:15-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:48:15-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
On the local behavior of the Orlicz-Sobolev classes
by: E. A. Sevostjanov, et al.
Published: (2016) -
Fredholm boundary-value problem in Sobolev – Slobodetsky spaces
by: V. A. Mykhay̆lets, et al.
Published: (2021) -
Fredholm boundaryvalue problems with parameter in Sobolev—Slobodetsky spaces
by: V. A. Mykhailets, et al.
Published: (2021) -
Fredholm Boundary-Value Problems with Parameter in Sobolev Spaces
by: E. V. Gnyp, et al.
Published: (2015) -
On the solvability of inhomogeneous boundary-value problems in Sobolev spaces
by: O. M. Atlasiuk, et al.
Published: (2019)