Уточнение асимптотической аппроксимации размера группы в парадоксе дней рождений
Доведено дві теореми про асимптотичну поведінку розміру групи у парадоксі днів народжень. В теоремі 1 наведено асимптотично непокращувальні оцінки для розміру групи у випадку рівноймовірного та незалежного розміщення частинок по чарунках. В теоремі 2 наведено асипмптотично непокращувальні оцінки для...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2010
|
Назва видання: | Кибернетика и системный анализ |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/45210 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Уточнение асимптотической аппроксимации размера группы в парадоксе дней рождений / П.А. Ендовицкий // Кибернетика и системный анализ. — 2010. — № 3. — С. 185-188. — Бібліогр.: 6 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Доведено дві теореми про асимптотичну поведінку розміру групи у парадоксі днів народжень. В теоремі 1 наведено асимптотично непокращувальні оцінки для розміру групи у випадку рівноймовірного та незалежного розміщення частинок по чарунках. В теоремі 2 наведено асипмптотично непокращувальні оцінки для розміру групи у випадку рівноймовірного та незалежного розміщення двох однакових комплектів частинок по чарунках. Отримані результати можна застосувати у криптографії для оцінювання трудомісткості побудови колізій хеш-функцій. |
---|