A new test for unimodality
A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4530 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-4530 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-45302009-11-26T12:00:35Z A new test for unimodality Andrushkiw, R.I. Klyushin, D.D. Petunin, Y.I. A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of this paper is to construct nonparametric tests for the unimodality of d.f. based on a sample obtained from the general population of values of the random variable by simple sampling. The tests proposed are significance tests such that the unimodality of d.f. can be guaranteed with some probability (confidence level). 2008 Article A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4530 519.21 en Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of this paper is to construct nonparametric tests for the unimodality of d.f. based on a sample obtained from the general population of values of the random variable by simple sampling. The tests proposed are significance tests such that the unimodality of d.f. can be guaranteed with some probability (confidence level). |
format |
Article |
author |
Andrushkiw, R.I. Klyushin, D.D. Petunin, Y.I. |
spellingShingle |
Andrushkiw, R.I. Klyushin, D.D. Petunin, Y.I. A new test for unimodality |
author_facet |
Andrushkiw, R.I. Klyushin, D.D. Petunin, Y.I. |
author_sort |
Andrushkiw, R.I. |
title |
A new test for unimodality |
title_short |
A new test for unimodality |
title_full |
A new test for unimodality |
title_fullStr |
A new test for unimodality |
title_full_unstemmed |
A new test for unimodality |
title_sort |
new test for unimodality |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/4530 |
citation_txt |
A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ. |
work_keys_str_mv |
AT andrushkiwri anewtestforunimodality AT klyushindd anewtestforunimodality AT petuninyi anewtestforunimodality AT andrushkiwri newtestforunimodality AT klyushindd newtestforunimodality AT petuninyi newtestforunimodality |
first_indexed |
2023-03-24T08:30:35Z |
last_indexed |
2023-03-24T08:30:35Z |
_version_ |
1796139190287597568 |