A new test for unimodality

A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Andrushkiw, R.I., Klyushin, D.D., Petunin, Y.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4530
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4530
record_format dspace
spelling irk-123456789-45302009-11-26T12:00:35Z A new test for unimodality Andrushkiw, R.I. Klyushin, D.D. Petunin, Y.I. A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of this paper is to construct nonparametric tests for the unimodality of d.f. based on a sample obtained from the general population of values of the random variable by simple sampling. The tests proposed are significance tests such that the unimodality of d.f. can be guaranteed with some probability (confidence level). 2008 Article A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4530 519.21 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of this paper is to construct nonparametric tests for the unimodality of d.f. based on a sample obtained from the general population of values of the random variable by simple sampling. The tests proposed are significance tests such that the unimodality of d.f. can be guaranteed with some probability (confidence level).
format Article
author Andrushkiw, R.I.
Klyushin, D.D.
Petunin, Y.I.
spellingShingle Andrushkiw, R.I.
Klyushin, D.D.
Petunin, Y.I.
A new test for unimodality
author_facet Andrushkiw, R.I.
Klyushin, D.D.
Petunin, Y.I.
author_sort Andrushkiw, R.I.
title A new test for unimodality
title_short A new test for unimodality
title_full A new test for unimodality
title_fullStr A new test for unimodality
title_full_unstemmed A new test for unimodality
title_sort new test for unimodality
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/4530
citation_txt A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ.
work_keys_str_mv AT andrushkiwri anewtestforunimodality
AT klyushindd anewtestforunimodality
AT petuninyi anewtestforunimodality
AT andrushkiwri newtestforunimodality
AT klyushindd newtestforunimodality
AT petuninyi newtestforunimodality
first_indexed 2023-03-24T08:30:35Z
last_indexed 2023-03-24T08:30:35Z
_version_ 1796139190287597568