A new test for unimodality
A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4530 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!