2025-02-22T10:18:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-4538%22&qt=morelikethis&rows=5
2025-02-22T10:18:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-4538%22&qt=morelikethis&rows=5
2025-02-22T10:18:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:18:18-05:00 DEBUG: Deserialized SOLR response
Distribution of the maximum of the Chentsov random field
Let D = [0, 1]^2 and X(s, t), (s, t) belongs D, be a two-parameter Chentsov random field. The aim of this paper is to find the probability distribution of the maximum of X(s, t) on a class of polygonal lines.
Saved in:
Main Author: | Kruglova, N. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2008
|
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/4538 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T10:18:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-4538%22&qt=morelikethis
2025-02-22T10:18:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-4538%22&qt=morelikethis
2025-02-22T10:18:18-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:18:18-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
On some generalizations of the results about the distribution of the maximum of the Chentsov random field on polygonal lines
by: N. V. Prokhorenko
Published: (2016) -
Limit theorems for the maximum of sums of independent random processes
by: I. K. Matsak, et al.
Published: (2018) -
Modelling Distributed Priors by Gibbs Random Fields of Second Order
by: B. Flach, et al.
Published: (2011) -
Modelling Distributed Priors by Gibbs Random Fields of Second Order
by: Flach, B., et al.
Published: (2011) -
Interpolation of homogeneous and isotropic random field in the center of the sphere by uniform distributed observations
by: Semenovs’ka, N.
Published: (2007)