Certain properties of triangular transformations of measures
We study the convergence of triangular mappings on R^n, i.e., mappings T such that the ith coordinate function Ti depends only on the variables x1, . . . ,xi. We show that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An exam...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4540 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Certain properties of triangular transformations of measures / K.V. Medvedev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 95–99. — Бібліогр.: 12 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-4540 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-45402009-11-26T12:00:38Z Certain properties of triangular transformations of measures Medvedev, K.V. We study the convergence of triangular mappings on R^n, i.e., mappings T such that the ith coordinate function Ti depends only on the variables x1, . . . ,xi. We show that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An example is constructed showing that the convergence in variation of measures is not sufficient for the convergence almost everywhere of the associated canonical triangular transformations. Finally, we show that the weak convergence of absolutely continuous convex measures to an absolutely continuous measure yields the convergence in variation. As a corollary, this implies the convergence in measure of the associated canonical triangular transformations. 2008 Article Certain properties of triangular transformations of measures / K.V. Medvedev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 95–99. — Бібліогр.: 12 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4540 519.21 en Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study the convergence of triangular mappings on R^n, i.e., mappings T such that the ith coordinate function Ti depends only on the variables x1, . . . ,xi. We show that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An example is constructed showing that the convergence in variation of measures is not sufficient for the convergence almost everywhere of the associated canonical triangular transformations. Finally, we show
that the weak convergence of absolutely continuous convex measures to an absolutely continuous measure yields the convergence in variation. As a corollary, this implies the convergence in measure of the associated canonical triangular transformations. |
format |
Article |
author |
Medvedev, K.V. |
spellingShingle |
Medvedev, K.V. Certain properties of triangular transformations of measures |
author_facet |
Medvedev, K.V. |
author_sort |
Medvedev, K.V. |
title |
Certain properties of triangular transformations of measures |
title_short |
Certain properties of triangular transformations of measures |
title_full |
Certain properties of triangular transformations of measures |
title_fullStr |
Certain properties of triangular transformations of measures |
title_full_unstemmed |
Certain properties of triangular transformations of measures |
title_sort |
certain properties of triangular transformations of measures |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/4540 |
citation_txt |
Certain properties of triangular transformations of measures / K.V. Medvedev // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 95–99. — Бібліогр.: 12 назв.— англ. |
work_keys_str_mv |
AT medvedevkv certainpropertiesoftriangulartransformationsofmeasures |
first_indexed |
2023-03-24T08:30:38Z |
last_indexed |
2023-03-24T08:30:38Z |
_version_ |
1796139191348756480 |