A uniqueness theorem for the martingale problem describing a diffusion in media with membranes

We formulate a martingale problem that describes a diffusion process in a multidimensional Euclidean space with a membrane located on a given mooth surface and having the properties of skewing and delaying. The theorem on the existence of no more than one solution to the problem is proved.

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Aryasova, O.V., Portenko, M.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4547
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A uniqueness theorem for the martingale problem describing a diffusion in media with membranes / O.V. Aryasova, M.I. Portenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 1–9. — Бібліогр.: 9 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4547
record_format dspace
spelling irk-123456789-45472009-12-07T12:00:35Z A uniqueness theorem for the martingale problem describing a diffusion in media with membranes Aryasova, O.V. Portenko, M.I. We formulate a martingale problem that describes a diffusion process in a multidimensional Euclidean space with a membrane located on a given mooth surface and having the properties of skewing and delaying. The theorem on the existence of no more than one solution to the problem is proved. 2008 Article A uniqueness theorem for the martingale problem describing a diffusion in media with membranes / O.V. Aryasova, M.I. Portenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 1–9. — Бібліогр.: 9 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4547 519.21 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We formulate a martingale problem that describes a diffusion process in a multidimensional Euclidean space with a membrane located on a given mooth surface and having the properties of skewing and delaying. The theorem on the existence of no more than one solution to the problem is proved.
format Article
author Aryasova, O.V.
Portenko, M.I.
spellingShingle Aryasova, O.V.
Portenko, M.I.
A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
author_facet Aryasova, O.V.
Portenko, M.I.
author_sort Aryasova, O.V.
title A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_short A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_full A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_fullStr A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_full_unstemmed A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
title_sort uniqueness theorem for the martingale problem describing a diffusion in media with membranes
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/4547
citation_txt A uniqueness theorem for the martingale problem describing a diffusion in media with membranes / O.V. Aryasova, M.I. Portenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 1–9. — Бібліогр.: 9 назв.— англ.
work_keys_str_mv AT aryasovaov auniquenesstheoremforthemartingaleproblemdescribingadiffusioninmediawithmembranes
AT portenkomi auniquenesstheoremforthemartingaleproblemdescribingadiffusioninmediawithmembranes
AT aryasovaov uniquenesstheoremforthemartingaleproblemdescribingadiffusioninmediawithmembranes
AT portenkomi uniquenesstheoremforthemartingaleproblemdescribingadiffusioninmediawithmembranes
first_indexed 2023-03-24T08:30:39Z
last_indexed 2023-03-24T08:30:39Z
_version_ 1796139192518967296