On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space

For some natural classes of topological vector spaces, we show the absolute nonmeasurability of Minkowski’s sum of certain two universal measure zero sets. This result can be considered as a strong form of the classical theorem of Sierpinski [8] stating the existence of two Lebesgue measure zero sub...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Kharazishvili, A.B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4550
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space / A.B. Kharazishvili // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 35–41. — Бібліогр.: 22 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4550
record_format dspace
spelling irk-123456789-45502009-12-07T12:00:31Z On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space Kharazishvili, A.B. For some natural classes of topological vector spaces, we show the absolute nonmeasurability of Minkowski’s sum of certain two universal measure zero sets. This result can be considered as a strong form of the classical theorem of Sierpinski [8] stating the existence of two Lebesgue measure zero subsets of the Euclidean space, whose Minkowski’s sum is not Lebesgue measurable. 2008 Article On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space / A.B. Kharazishvili // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 35–41. — Бібліогр.: 22 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4550 519.21 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For some natural classes of topological vector spaces, we show the absolute nonmeasurability of Minkowski’s sum of certain two universal measure zero sets. This result can be considered as a strong form of the classical theorem of Sierpinski [8] stating the existence of two Lebesgue measure zero subsets of the Euclidean space, whose Minkowski’s sum is not Lebesgue measurable.
format Article
author Kharazishvili, A.B.
spellingShingle Kharazishvili, A.B.
On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
author_facet Kharazishvili, A.B.
author_sort Kharazishvili, A.B.
title On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_short On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_full On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_fullStr On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_full_unstemmed On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space
title_sort on a bad descriptive structure of minkowski’s sum of certain small sets in a topological vector space
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/4550
citation_txt On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space / A.B. Kharazishvili // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 35–41. — Бібліогр.: 22 назв.— англ.
work_keys_str_mv AT kharazishviliab onabaddescriptivestructureofminkowskissumofcertainsmallsetsinatopologicalvectorspace
first_indexed 2023-03-24T08:30:39Z
last_indexed 2023-03-24T08:30:39Z
_version_ 1796139192833540096