On the martingale problem for pseudo-differential operators of variable order

Consider parabolic pseudo-differential operators L = ∂t − p(x,Dx) of variable order α(x) ≤ 2. The function α(x) is assumed to be smooth, but the symbol p(x, ξ) is not always differentiable with respect to x. We will show the uniqueness of Markov processes with the generator L. The essential point in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Komatsu, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4551
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the martingale problem for pseudo-differential operators of variable order / T. Komatsu // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 42–51. — Бібліогр.: 10 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Consider parabolic pseudo-differential operators L = ∂t − p(x,Dx) of variable order α(x) ≤ 2. The function α(x) is assumed to be smooth, but the symbol p(x, ξ) is not always differentiable with respect to x. We will show the uniqueness of Markov processes with the generator L. The essential point in our study is to obtain the Lp-estimate for resolvent operators associated with solutions to the martingale problem for L. We will show that, by making use of the theory of pseudo-differential operators and a generalized Calderon–Zygmund inequality for singular integrals. As a consequence of our study, the Markov process with the generator L is constructed and characterized. The Markov process may be called a stable-like process with perturbation.