On the martingale problem for pseudo-differential operators of variable order

Consider parabolic pseudo-differential operators L = ∂t − p(x,Dx) of variable order α(x) ≤ 2. The function α(x) is assumed to be smooth, but the symbol p(x, ξ) is not always differentiable with respect to x. We will show the uniqueness of Markov processes with the generator L. The essential point in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Komatsu, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4551
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the martingale problem for pseudo-differential operators of variable order / T. Komatsu // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 42–51. — Бібліогр.: 10 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4551
record_format dspace
spelling irk-123456789-45512009-12-07T12:00:31Z On the martingale problem for pseudo-differential operators of variable order Komatsu, T. Consider parabolic pseudo-differential operators L = ∂t − p(x,Dx) of variable order α(x) ≤ 2. The function α(x) is assumed to be smooth, but the symbol p(x, ξ) is not always differentiable with respect to x. We will show the uniqueness of Markov processes with the generator L. The essential point in our study is to obtain the Lp-estimate for resolvent operators associated with solutions to the martingale problem for L. We will show that, by making use of the theory of pseudo-differential operators and a generalized Calderon–Zygmund inequality for singular integrals. As a consequence of our study, the Markov process with the generator L is constructed and characterized. The Markov process may be called a stable-like process with perturbation. 2008 Article On the martingale problem for pseudo-differential operators of variable order / T. Komatsu // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 42–51. — Бібліогр.: 10 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4551 519.21 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Consider parabolic pseudo-differential operators L = ∂t − p(x,Dx) of variable order α(x) ≤ 2. The function α(x) is assumed to be smooth, but the symbol p(x, ξ) is not always differentiable with respect to x. We will show the uniqueness of Markov processes with the generator L. The essential point in our study is to obtain the Lp-estimate for resolvent operators associated with solutions to the martingale problem for L. We will show that, by making use of the theory of pseudo-differential operators and a generalized Calderon–Zygmund inequality for singular integrals. As a consequence of our study, the Markov process with the generator L is constructed and characterized. The Markov process may be called a stable-like process with perturbation.
format Article
author Komatsu, T.
spellingShingle Komatsu, T.
On the martingale problem for pseudo-differential operators of variable order
author_facet Komatsu, T.
author_sort Komatsu, T.
title On the martingale problem for pseudo-differential operators of variable order
title_short On the martingale problem for pseudo-differential operators of variable order
title_full On the martingale problem for pseudo-differential operators of variable order
title_fullStr On the martingale problem for pseudo-differential operators of variable order
title_full_unstemmed On the martingale problem for pseudo-differential operators of variable order
title_sort on the martingale problem for pseudo-differential operators of variable order
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/4551
citation_txt On the martingale problem for pseudo-differential operators of variable order / T. Komatsu // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 42–51. — Бібліогр.: 10 назв.— англ.
work_keys_str_mv AT komatsut onthemartingaleproblemforpseudodifferentialoperatorsofvariableorder
first_indexed 2023-03-24T08:30:40Z
last_indexed 2023-03-24T08:30:40Z
_version_ 1796139192938397696