Exact non-ruin probabilities in arithmetic case

Using the Wiener-Hopf method, for the model with arithmetic distributions of waiting times Ti and claims Zi in ordinary renewal process, an exact non-ruin probabilities for an insurance company in terms of the factorization of the symbol of the discrete Feller-Lundberg equation, are obtained. The de...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Chernecky, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4567
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Exact non-ruin probabilities in arithmetic case / V. Chernecky // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 3-4. — С. 39-52. — Бібліогр.: 6 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4567
record_format dspace
spelling irk-123456789-45672009-12-08T12:00:39Z Exact non-ruin probabilities in arithmetic case Chernecky, V. Using the Wiener-Hopf method, for the model with arithmetic distributions of waiting times Ti and claims Zi in ordinary renewal process, an exact non-ruin probabilities for an insurance company in terms of the factorization of the symbol of the discrete Feller-Lundberg equation, are obtained. The delayed stationary process is introduced and generating function for delay is given. It is proved that the stationary renewal process in arithmetic case is ordinary if and only if, when the inter-arrival times have the shifted geometrical distribution. A formula for exact non-ruin probabilities in delayed stationary process is obtained. Illustrative examples when the distributions of Ti and Zi are shifted geometrical or negative binomial with positive integer power are considered. In these cases the symbol of the equation is rational functions what allows us to obtain the factorization in explicit form. 2008 Article Exact non-ruin probabilities in arithmetic case / V. Chernecky // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 3-4. — С. 39-52. — Бібліогр.: 6 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4567 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Using the Wiener-Hopf method, for the model with arithmetic distributions of waiting times Ti and claims Zi in ordinary renewal process, an exact non-ruin probabilities for an insurance company in terms of the factorization of the symbol of the discrete Feller-Lundberg equation, are obtained. The delayed stationary process is introduced and generating function for delay is given. It is proved that the stationary renewal process in arithmetic case is ordinary if and only if, when the inter-arrival times have the shifted geometrical distribution. A formula for exact non-ruin probabilities in delayed stationary process is obtained. Illustrative examples when the distributions of Ti and Zi are shifted geometrical or negative binomial with positive integer power are considered. In these cases the symbol of the equation is rational functions what allows us to obtain the factorization in explicit form.
format Article
author Chernecky, V.
spellingShingle Chernecky, V.
Exact non-ruin probabilities in arithmetic case
author_facet Chernecky, V.
author_sort Chernecky, V.
title Exact non-ruin probabilities in arithmetic case
title_short Exact non-ruin probabilities in arithmetic case
title_full Exact non-ruin probabilities in arithmetic case
title_fullStr Exact non-ruin probabilities in arithmetic case
title_full_unstemmed Exact non-ruin probabilities in arithmetic case
title_sort exact non-ruin probabilities in arithmetic case
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/4567
citation_txt Exact non-ruin probabilities in arithmetic case / V. Chernecky // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 3-4. — С. 39-52. — Бібліогр.: 6 назв.— англ.
work_keys_str_mv AT cherneckyv exactnonruinprobabilitiesinarithmeticcase
first_indexed 2023-03-24T08:30:43Z
last_indexed 2023-03-24T08:30:43Z
_version_ 1796139194518601728