Risk process with stochastic premiums

The Cramer-Lundberg model with stochastic premiums which is natural generalization of classical dynamic risk model is considered. Using martingale technique the Lundberg inequality for ruin probability is proved and characteristic equations for Lundberg coefficients are presented for certain classes...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Zinchenko, N., Andrusiv, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4576
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Risk process with stochastic premiums / N. Zinchenko, A. Andrusiv // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 3-4. — С. 189-208. — Бібліогр.: 36 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The Cramer-Lundberg model with stochastic premiums which is natural generalization of classical dynamic risk model is considered. Using martingale technique the Lundberg inequality for ruin probability is proved and characteristic equations for Lundberg coefficients are presented for certain classes of stochastic premiums and claims. The simple diffusion and de Vylder approximations for the ruin probability are introduced and investigated similarly to classical Cramer-Lundberg set-up. The weak and strong invariance principles for risk processes with stochastic premiums are discussed. Certain variants of the strong invariance principle for risk process are proved under various assumptions on claim size distributions. Obtained results are used for investigation the rate of growth of the risk process and its increments. Various modifications of the LIL and Erdos-Renyi-type SSLN are proved both for the cases of small and large claims.