Experimental Verification of Internal Convergence of Iterative GMDH Algorithms

The availability of so-called internal convergence of some iterative GMDH algorithms is verified in this paper using computational experiments.

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Stepashko, V., Bulgakova, O., Zosimov, V.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2012
Назва видання:Індуктивне моделювання складних систем
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/45956
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Experimental Verification of Internal Convergence of Iterative GMDH Algorithms / V. Stepashko, O. Bulgakova, V. Zosimov // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2012. — Вип. 4. — С. 38-42. — Бібліогр.: 2 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-45956
record_format dspace
spelling irk-123456789-459562013-06-22T03:16:50Z Experimental Verification of Internal Convergence of Iterative GMDH Algorithms Stepashko, V. Bulgakova, O. Zosimov, V. The availability of so-called internal convergence of some iterative GMDH algorithms is verified in this paper using computational experiments. В статті за допомогою обчислювальних експериментів перевіряється наявність так званої внутрішньої збіжності деяких ітераційних алгоритмів МГУА. В статті за допомогою обчислювальних експериментів перевіряється наявність так званої внутрішньої збіжності деяких ітераційних алгоритмів МГУА. 2012 Article Experimental Verification of Internal Convergence of Iterative GMDH Algorithms / V. Stepashko, O. Bulgakova, V. Zosimov // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2012. — Вип. 4. — С. 38-42. — Бібліогр.: 2 назв. — англ. XXXX-0044 http://dspace.nbuv.gov.ua/handle/123456789/45956 681.5.015 en Індуктивне моделювання складних систем Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The availability of so-called internal convergence of some iterative GMDH algorithms is verified in this paper using computational experiments.
format Article
author Stepashko, V.
Bulgakova, O.
Zosimov, V.
spellingShingle Stepashko, V.
Bulgakova, O.
Zosimov, V.
Experimental Verification of Internal Convergence of Iterative GMDH Algorithms
Індуктивне моделювання складних систем
author_facet Stepashko, V.
Bulgakova, O.
Zosimov, V.
author_sort Stepashko, V.
title Experimental Verification of Internal Convergence of Iterative GMDH Algorithms
title_short Experimental Verification of Internal Convergence of Iterative GMDH Algorithms
title_full Experimental Verification of Internal Convergence of Iterative GMDH Algorithms
title_fullStr Experimental Verification of Internal Convergence of Iterative GMDH Algorithms
title_full_unstemmed Experimental Verification of Internal Convergence of Iterative GMDH Algorithms
title_sort experimental verification of internal convergence of iterative gmdh algorithms
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/45956
citation_txt Experimental Verification of Internal Convergence of Iterative GMDH Algorithms / V. Stepashko, O. Bulgakova, V. Zosimov // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2012. — Вип. 4. — С. 38-42. — Бібліогр.: 2 назв. — англ.
series Індуктивне моделювання складних систем
work_keys_str_mv AT stepashkov experimentalverificationofinternalconvergenceofiterativegmdhalgorithms
AT bulgakovao experimentalverificationofinternalconvergenceofiterativegmdhalgorithms
AT zosimovv experimentalverificationofinternalconvergenceofiterativegmdhalgorithms
first_indexed 2025-07-04T05:00:19Z
last_indexed 2025-07-04T05:00:19Z
_version_ 1836691198747607040
fulltext Experimental verification of internal convergence УДК 681.5.015 EXPERIMENTAL VERIFICATION OF INTERNAL CONVERGENCE OF ITERATIVE GMDH ALGORITHMS Volodymyr Stepashko1, Oleksandra Bulgakova2, Viacheslav Zosimov1 1. International Research and Training Centre for Information Technologies and Systems of the NAS and MES of Ukraine. Akademik Glushkov Prospect 40, Kyiv, 03680, Ukraine 2. Mykolaiv V.O.Suhomlynsky National University sashabulgakova1@gmail.com; stepashko@irtc.org.ua В статті за допомогою обчислювальних експериментів перевіряється наявність так званої внутрішньої збіжності деяких ітераційних алгоритмів МГУА. Ключові слова: індуктивне моделювання, МГУА, багаторядний ітераційний алгоритм, комбінаторний алгоритм, гібридний алгоритм The availability of so-called internal convergence of some iterative GMDH algorithms is verified in this paper using computational experiments. Keywords Inductive modeling, GMDH, multilayered iterative algorithm, combinatorial algorithm, hybrid algorithm В статті за допомогою обчислювальних експериментів перевіряється наявність так званої внутрішньої збіжності деяких ітераційних алгоритмів МГУА. Ключевые слова: индуктивное моделирование, МГУА, многорядный итерационный алгоритм, комбинаторный алгоритм, гибридный алгоритм Iterative algorithms In the classical multilayered iterative algorithm MIA GMDH [1] each partial model ),( ji xxf ix is formed as a combination of input variables , , jx mji ,...,2,1, = , in initial layer and combination of model outputs obtained in the previous layer, starting from the second. Typically linear, bilinear or quadratic polynomials of a pair of arguments may be used as the partial descriptions: 1 2 1 10 −− ++= r j r i r l yayaay , (1) 11 4 1 2 1 10 −−−− +++= r j r i r j r i r l yyayayaay , (1a) 21 5 11 4 21 3 1 2 1 10 )()( −−−−−− +++++= r j r j r i r i r j r i r l yayyayayayaay (1b) Coefficients , ,…,0a 1a 5a are estimated in the training data set using the least squares method. The best F models with respect to the value of an external selection criterion are involved in the formation of model variants in a next layer. The process is finished in the layer, after which the criterion minimum begins to grow. In this case there is a possibility of essential arguments loss in the selection process because those lost after the first layer fall out from the subsequent selection process. In [2] we proposed the following types of hybrid algorithms: Індуктивне моделювання складних систем, випуск 4, 2012 38 mailto:sashabulgakova1@gmail.com mailto:stepashko@irtc.org.ua Stepashko V., Bulgakova O., Zosimov V. 1. Combined Iterative Algorithm (CIA) – the algorithm with equal usage of both intermediate and initial arguments: ),(),()1( j r i r j r i r l xyfyyfy ∨=+ (2) 2. Combined Iterative Combinatorial Algorithm (CICA) – algorithm with combinatorial optimization of partial descriptions complexity and adding the initial arguments in each layer to avoid loosing the relevant ones ),(),()1( j r iopt r j r iopt r l xyfyyfy ∨=+ (3) Combinatorial optimization consists in that on each layer we consider the model, for example linear: 1 32 1 2110),( −− ++= r j r i r j r i ydaydadayyf , (4) where are elements of the binary structural vector d that takes on a value 1 or 0 (inclusion or non-inclusion of the proper argument): , : 3,2,1, =kdk }1,0{=kd ),,(),( opt r j r i r j r iopt dyyfyyf = opt r j r i r j r i r j r i r j r i f CR CR CR CR CR CR CR yayaaf yayaf yaaf yaaf yaf yaf af min 7 6 5 4 3 2 1 1 2 1 107 1 2 1 16 1 105 1 104 1 13 1 12 01 111 110 101 011 100 010 001 ⇒ ⎪ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎪ ⎬ ⎫ ++=→ +=→ ++=→ +=→ =→ =→ =→ −− −− − − − − Internal convergence of iterative algorithms An iterative algorithm holds an internal convergence if as a result of iteration process with the selection criterion CR=RSS, where RSS is the residual sum of squares on the entire sample W (without partition), the estimation of optimal model parameters are converging to LSM estimates of the true structure model parameters. The sample splitting to the training and testing sub-samples is not used in this case (m=10, n=50). It is studying internal convergence of the three iterative GMDH algorithms: classical MIA, combined CIA, and generalized CICA. The true model is the following linear function of ten arguments: 10987654321 8,15,23427523 xxxxxxxxxxy +−+−+−+−+−= o . (5) Table 1 and Fig. 1 shows the change of RSS values as dependent on the layer number r of these algorithms with F = 20. Індуктивне моделювання складних систем, випуск 4, 2012 39 Experimental verification of internal convergence Table 1 RSS value in the layers for the three iterative algorithms Layer, r RSS for CІА RSS for CICA RSS for MIA 1 416,15 416,15 416,15 2 194,25 121,75 346,52 3 44,02 9,20 309,34 4 5,10 0,98 238,12 5 1,47 0,53 201,7 6 0,70 0,27 144,78 7 0,65 0,11 113,12 8 0,59 0,003 113,06 9 0,36 0,0011 – 10 0,21 0,0010 – 11 0,13 0,0010 – 12 0,007 – – 13 0,0069 – – 14 0,0068 – – 15 0,0066 – – 16 0,0064 – – 0,001 0,01 0,1 1 10 100 1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 r Ln R SS RSS for MІА RSS for CІА RSS for CICA Fig. 1 Change of RSS values for the three iterative GMDH algorithms, F = 20 (logarithmic scale) The constructed models are of form: 109876 54321CIA 003,1808,1514,2994,2997,3 988,1004,7015,1999,4978,1913,2 xxxxx xxxxxy +−+−+ +−+−+−= (6) 109876 54321CICA 003,1801,1500,2999,2000,4 998,1004,7002,1999,4999,1001,3 xxxxx xxxxxy +−+−+ +−+−+−= (7) Індуктивне моделювання складних систем, випуск 4, 2012 40 Stepashko V., Bulgakova O., Zosimov V. 1098 65432MIA 437,0643,2278,1 726,4812,0266,5535,0334,5387,22 xxx xxxxxy +−+ +++−+−= (8) The first and second equations (6), (7) generally confirm the internal convergence of the two iterative algorithms as values of the estimated parameters are close to the true ones, see (5). The fig.1 shows that the generalized algorithm reaches its minimum on the 9th layer and the combined one on the 12th, so the convergence rate of CICA is much higher than CIA. The accuracy of the obtained models also differs in favor of the generalized algorithm: for CICA RSS=0.001, for CІА RSS=0.006. This demonstrates the effectiveness of the idea of partial models optimization. In the classical multilayered algorithm MIA the convergence is observed only by criterion but there is no internal convergence with respect to the structure and parameters in view of the loss of true arguments х and х1 7, see (8). Table 2 shows the change in the best models structure and parameters for CICA. One can see that the true structure was found at 4 layer after which there was only changing the values of the parameters being estimated. Table 2 RSS value in the best models structure and parameters for CICA Layer r RSS Model 1 416,15 42 581,6521,5806,15 xxy −= + +) 2 121,75 9642 988,1604,5286,5434,4220,7 xxxxy −+++−=) 3 9,20 1098 76542 905,0647,2177,2 412,3467,4073,1700,5782,4084,7 xxх xxxxxy +−+ +−+−++=) 4 0,98 109876 54321 962,0801,1492,2968,2016,4 008,2054,7019,1028,5953,1245,2 xxxxx xxxxxy +−+−+ +−+−+−=) 5 0,53 109876 54321 964,0801,1505,2968,2016,4 989,1986,6021,1987,4982,1121,3 xxxxx xxxxxy +−+−+ +−+−+−=) 6 0,27 109876 54321 965,0801,1505,2995,2004,4 995,1986,6015,1987,4982,1121,3 xxxxx xxxxxy +−+−+ +−+−+−=) 7 0,11 109876 54321 988,0801,1501,2997,2001,4 998,1005,7003,1997,4989,1011,3 xxxxx xxxxxy +−+−+ +−+−+−=) 8 0,003 109876 54321 003,1801,1501,2999,2000,4 998,1005,7003,1999,4999,1001,3 xxxxx xxxxxy +−+−+ +−+−+−=) 9 0,0011 109876 54321 003,1801,1501,2999,2000,4 998,1004,7002,1999,4999,1001,3 xxxxx xxxxxy +−+−+ +−+−+−=) 10 0,0010 109876 54321 003,1801,1500,2999,2000,4 998,1004,7002,1999,4999,1001,3 xxxxx xxxxxy +−+−+ +−+−+−=) Індуктивне моделювання складних систем, випуск 4, 2012 41 Experimental verification of internal convergence To confirm this results, 10 redundant arguments was added to the data sample, hence m = 20, and true linear model corresponds to the same formula (5). When doing so, only Combined Iterative Combinatorial algorithm was used. The following models were obtained using LSM (regression analysis) and CICA: 2019181716 15141312 1110987 654321 00001,0000002,0000001,00000003,000001,0 0000001,00000003,000001,0000002,0 000001,0000,18,1498,23 999,32999,6998,423 xxxxx xxxx xxxxx xxxxxxyREGR +++−+ +++−+ +−+−+− −+−+−+−=) (9) 191310987 654321 000003,000001,0003,1801,1501,2999,2 000,4998,1004,7002,1999,4999,1001,3 xxxxxx xxxxxxyCICA +−+−+− −+−+−+−=) (10) The model (9) built by LSM includes all 20 arguments, both true and redundant, though with very small coefficients, and RSS = 0.0001 for it. The model (10) confirms the CICA algorithm effectiveness even with 10 redundant (uninformative) arguments. This model includes redundant arguments x13 and x19 but with very small values of estimated parameters. This means that the iterative algorithm CICA GMDH can be used not only for structural and parametric identification but also as an iterative procedure of parameter estimation of models by minimizing RSS. Conclusion The results obtained above illustrate, first, that the developed architecture of the Combined Iterative Combinatorial GMDH algorithm allows investigating various versions of iterative algorithms, and second, this algorithm demonstrates higher performance in testing tasks. The complex technique of analyzing the efficiency of iterative GMDH algorithms using computational experiments allows a comparative study of various iterative algorithms effectiveness. The comparison of the hybrid CICA GMDH algorithm with other iterative GMDH algorithms has been made based on study of the internal convergence process. Executed experiments showed the best performance of the CICA algorithm. References [1] Ivakhnenko A.G. Group method of data handling as a competitor for the method of stochastic approximation. – Soviet Automatic Control, 1968, No. 3. – P. 58-72. [2] Stepashko V., Bulgakova O., Zosimov V. Modified multilayered GMDH algorithm with combinatorial optimization of partial descriptions complexity // Proceedings of the III Intern. Conf. on Inductive Modelling ICIM-2010, May 16-22, 2010, Yevpatoria, Crimea, Ukraine. – Kherson: KNTU, 2010. – P. 24-29. Індуктивне моделювання складних систем, випуск 4, 2012 42