Застосування методу гілок та границь для вибору оптимальної регресійної моделі для мінімаксного функціоналу оцінки моделі
В статті пропанується стохастичний метод гілок та границь для рішення дискретної задачі оптимізації по вибору оптимальної регресійної моделі для мінімаксного функціоналу оцінки моделі. Для розбивки поточної множини рішень задачі на підмножини розгалуження використовується принцип дихотомії. Для підм...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
2009
|
Назва видання: | Економіко-математичне моделювання соціально-економічних систем |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/46074 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Застосування методу гілок та границь для вибору оптимальної регресійної моделі для мінімаксного функціоналу оцінки моделі / І.М. Мельник // Екон.-мат. моделювання соц.-екон. систем: Зб. наук. пр. — К.: МННЦІТС НАН та МОН України, 2009. — Вип. 14. — С. 115-129. — Бібліогр.: 4 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В статті пропанується стохастичний метод гілок та границь для рішення дискретної задачі оптимізації по вибору оптимальної регресійної моделі для мінімаксного функціоналу оцінки моделі. Для розбивки поточної множини рішень задачі на підмножини розгалуження використовується принцип дихотомії. Для підмножин розгалуження спеціальною формулою обчислюються оцінки знизу цільової функції задачі вибору оптимальної моделі. Вибір поточної підмножини рішень для проведення процедури розгалуження здійснюється стохастичною процедурою. |
---|