Численное моделирование турбулентного течения с отрывом за обратным уступом
Турбулентный поток с отрывом за уступом, обращенным назад, численно моделируется посредством LES-технологии для числа Рейнольдса, равного 3850 для уступа, и для числа Рейнольдса на входе, равного 7623 для турбулентного пограничного слоя. Крупномасштабное поле течения получается путем прямого интегри...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут гідромеханіки НАН України
2007
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4714 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Численное моделирование турбулентного течения с отрывом за обратным уступом / В.Г. Кузьменко // Прикладна гідромеханіка. — 2007. — Т. 9, № 4. — С. 37-48. — Бібліогр.: 32 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-4714 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-47142009-12-21T12:01:13Z Численное моделирование турбулентного течения с отрывом за обратным уступом Кузьменко, В.Г. Турбулентный поток с отрывом за уступом, обращенным назад, численно моделируется посредством LES-технологии для числа Рейнольдса, равного 3850 для уступа, и для числа Рейнольдса на входе, равного 7623 для турбулентного пограничного слоя. Крупномасштабное поле течения получается путем прямого интегрирования фильтрованных трехмерных нестационарных уравнений Навье-Стокса для несжимаемой жидкости, используя конечно-разностный метод. Маломасштабные движения параметризованы посредством динамической ''смешанной'' модели. Число использованых сеточных узлов составляет {337 × 145 × 145} . Численное моделирование выполнено для того, чтобы изучить среднюю скорость, турбулентные напряжения, кинетическую энергию турбулентности, подсеточные эффекты, средний коеффициент давления на стенке, средний коеффициент поверхностного трения, среднюю длину присоединения и средний размер региона рециркуляции. Вычисленные профили средней скорости и турбулентных статистик хорошо согласуются с экспериментальными данными. Турбулентний потiк з вiдривом за порогом, зверненим назад, чисельно моделюється за допомогою LES-технологiї для числа Рейнольдса, що дорiвнює 3850 для порогу, та для числа Рейнольдса на входi, що дорiвнює 7623 для турбулентного пограничного шару. Великомасштабне поле течiї одержується шляхом прямого iнтегрування фiльтрованих тривимiрних нестацiонарних рiвнянь Нав'є-Стокса для нестисливої рiдини, використовуючи кiнцево-рiзницевий метод. Маломасштабнi рухи параметризованi за допомогою динамiчної ''змiшаної'' моделi. Число використаних сiткових вузлiв є {337 × 145 × 145}. Чисельне моделювання виконано для того, щоб вивчити середню швидкiсть, турбулентнi напруги, кiнетичну енергiю турбулентностi, пiдсiтковi ефекти, середнiй коефiцiєнт тиску на стiнцi, середнiй коефiцiєнт поверхневого тертя, середню довжину приєднання та середнiй розмiр регiону рециркуляцiї. Узгоджуваннiсть обчисленних профiлiв середньої швидкостi i турбулентних статистик з експериментальними результатами є доброю. The turbulent flow with separation after backward-facing step is simulated by LES-technique for step Reynolds number of 3850 and inflow Reynolds number of 7623 for turbulent boundary layer. The large-scale flow field has been obtained by directly integrating the filtered three-dimensional time-dependent incompressible Navier-Stokes equations using a finite-difference method. The small-scale motions were parametrized by dynamic subgrid-scale mixed model. The number of grid points used in the numerical method was {337 × 145 × 145}. The simulation were performed to study the mean velocity, the turbulent stresses, the turbulence kinetic energy, subgrid-scale-model effects, mean wall pressure coefficient, mean wall-skin friction coefficient, mean re-attachment length and mean size recirculation region. There is good agreement between the computer mean-velocity profiles, turbulence statistics and experimental data. 2007 Article Численное моделирование турбулентного течения с отрывом за обратным уступом / В.Г. Кузьменко // Прикладна гідромеханіка. — 2007. — Т. 9, № 4. — С. 37-48. — Бібліогр.: 32 назв. — рос. 1561-9087 http://dspace.nbuv.gov.ua/handle/123456789/4714 532.526.10 ru Інститут гідромеханіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
description |
Турбулентный поток с отрывом за уступом, обращенным назад, численно моделируется посредством LES-технологии для числа Рейнольдса, равного 3850 для уступа, и для числа Рейнольдса на входе, равного 7623 для турбулентного пограничного слоя. Крупномасштабное поле течения получается путем прямого интегрирования фильтрованных трехмерных нестационарных уравнений Навье-Стокса для несжимаемой жидкости, используя конечно-разностный метод. Маломасштабные движения параметризованы посредством динамической ''смешанной'' модели. Число использованых сеточных узлов составляет {337 × 145 × 145} . Численное моделирование выполнено для того, чтобы изучить среднюю скорость, турбулентные напряжения, кинетическую энергию турбулентности, подсеточные эффекты, средний коеффициент давления на стенке, средний коеффициент поверхностного трения, среднюю длину присоединения и средний размер региона рециркуляции. Вычисленные профили средней скорости и турбулентных статистик хорошо согласуются с экспериментальными данными. |
format |
Article |
author |
Кузьменко, В.Г. |
spellingShingle |
Кузьменко, В.Г. Численное моделирование турбулентного течения с отрывом за обратным уступом |
author_facet |
Кузьменко, В.Г. |
author_sort |
Кузьменко, В.Г. |
title |
Численное моделирование турбулентного течения с отрывом за обратным уступом |
title_short |
Численное моделирование турбулентного течения с отрывом за обратным уступом |
title_full |
Численное моделирование турбулентного течения с отрывом за обратным уступом |
title_fullStr |
Численное моделирование турбулентного течения с отрывом за обратным уступом |
title_full_unstemmed |
Численное моделирование турбулентного течения с отрывом за обратным уступом |
title_sort |
численное моделирование турбулентного течения с отрывом за обратным уступом |
publisher |
Інститут гідромеханіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/4714 |
citation_txt |
Численное моделирование турбулентного течения с отрывом за обратным уступом / В.Г. Кузьменко // Прикладна гідромеханіка. — 2007. — Т. 9, № 4. — С. 37-48. — Бібліогр.: 32 назв. — рос. |
work_keys_str_mv |
AT kuzʹmenkovg čislennoemodelirovanieturbulentnogotečeniâsotryvomzaobratnymustupom |
first_indexed |
2023-03-24T08:31:03Z |
last_indexed |
2023-03-24T08:31:03Z |
_version_ |
1796139205676498944 |