2025-02-23T15:16:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-47270%22&qt=morelikethis&rows=5
2025-02-23T15:16:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-47270%22&qt=morelikethis&rows=5
2025-02-23T15:16:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T15:16:27-05:00 DEBUG: Deserialized SOLR response

A removing uncertainty framework for approximating the probabilistic distribution over abrasive-adhesive-diffusive wear evaluation models off most-precautious distribution pattern

There are considered single-parameter output models of tool wear evaluation, grounded on abrasion, adhesion, and diffusion phe-nomena. A mathematical framework of removing such three-model uncertainty, using the multi-lap-measurement-approximated probabilistic distribution off most-precautious distr...

Full description

Saved in:
Bibliographic Details
Main Authors: Romanuke, V.V., Kovalchuk, S.S.
Format: Article
Language:English
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2012
Series:Математичне та комп'ютерне моделювання. Серія: Технічні науки
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/47270
Tags: Add Tag
No Tags, Be the first to tag this record!