Многозначные решения общей задачи теории относительного движения жидкости

Исходная общая задача теории относительного движения жидкости в виде уравнения Лапласа с граничными и начальными условиями переформулирована как начально-краевая задача для системы двух уравнений, состоящей из уравнения Лагранжа-Коши и уравнения Лапласа. Установлена гиперболичность уравнения Лагранж...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Золотенко, Г.Ф.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут гідромеханіки НАН України 2006
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4745
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Многозначные решения общей задачи теории относительного движения жидкости / Г.Ф. Золотенко // Прикладна гідромеханіка. — 2006. — Т. 8, № 1. — С. 22-30. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Исходная общая задача теории относительного движения жидкости в виде уравнения Лапласа с граничными и начальными условиями переформулирована как начально-краевая задача для системы двух уравнений, состоящей из уравнения Лагранжа-Коши и уравнения Лапласа. Установлена гиперболичность уравнения Лагранжа-Коши для квазипотенциала относительной скорости жидкости. Показано, что свободная поверхность жидкости является характеристикой этой формы уравнения Лагранжа-Коши. Доказана возможность существования многозначных решений рассматриваемой задачи и приведен пример такого решения (задача о "летящем цилиндре''). Сформулированы условия совместности данных Коши на свободной поверхности жидкости как на характеристике.