Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере
На основе приближенного подхода введен обобщенный потенциал в теорию винтовых течений в изотермической атмосфере. Задача сведена к решению линейного однородного дифференциального уравнения в частных производных второго порядка. Указано, что переменные в уравнении для обобщенного потенциала разделяют...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут гідромеханіки НАН України
2005
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4791 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере / В. Н.Салтанов, Ю. В. Ревенко, Н. С. Ефремова // Прикладна гідромеханіка. — 2005. — Т. 7, № 2. — С. 63-72. — Бібліогр.: 51 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-4791 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-47912009-12-24T12:00:44Z Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере Салтанов, В.Н. Ревенко, Ю.В. Ефремова, Н.С. На основе приближенного подхода введен обобщенный потенциал в теорию винтовых течений в изотермической атмосфере. Задача сведена к решению линейного однородного дифференциального уравнения в частных производных второго порядка. Указано, что переменные в уравнении для обобщенного потенциала разделяются в прямоугольной системе координат, трех цилиндрических (круговой, эллиптической и параболической), а также в сферической и конической системах. В случае аксиальной симметрии записано общее решение уравнения для функции тока через полиномы Лежандра и функции Бесселя. Построены поверхности тока для вихрей первой и второй степени. На основi наближеного пiдходу введений узагальнений потенцiал у теорiю гвинтових потокiв в iзотермiчнiй атмосферi. Задача зведена до розв'язання лiнiйного однорiдного диференцiального рiвняння в частинних похiдних другого порядку. Вказано, що змiннi в рiвняннi для узагальненого потенцiалу розподiляються в прямокутнiй системi координат, трьох цилiндричних (круговiй, елiптичний i параболiчний), а також у сферичнiй та конiчнiй системах. У випадку аксиальноi симетрiї записано загальний розв'язок рiвняння для функцiї току через полiноми Лежандра i функцiї Беселя. Побудованi поверхнi току вихорiв першої та другої ступенiв. Generalized potential, based on the approximate approach, is introduced in the theory of helical flow in the isotermic atmosphere. The problem is reduced to the solving of linear uniform differental equation in partial derivatives of the second order. It is shown, that variables in the equation for the generalized potential are separated in the rectangular system of coordinates, three cylindrical (circular, eliiptical and parabolic) and also in spherical and conical systems. In cases of axial symmetry equations for the current function the general solution is written down through Legendre polynomials and Bessel function. The current surfaces for the vortexes of the first and second degrees are built. 2005 Article Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере / В. Н.Салтанов, Ю. В. Ревенко, Н. С. Ефремова // Прикладна гідромеханіка. — 2005. — Т. 7, № 2. — С. 63-72. — Бібліогр.: 51 назв. — рос. 1561-9087 http://dspace.nbuv.gov.ua/handle/123456789/4791 532.5 ru Інститут гідромеханіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
description |
На основе приближенного подхода введен обобщенный потенциал в теорию винтовых течений в изотермической атмосфере. Задача сведена к решению линейного однородного дифференциального уравнения в частных производных второго порядка. Указано, что переменные в уравнении для обобщенного потенциала разделяются в прямоугольной системе координат, трех цилиндрических (круговой, эллиптической и параболической), а также в сферической и конической системах. В случае аксиальной симметрии записано общее решение уравнения для функции тока через полиномы Лежандра и функции Бесселя. Построены поверхности тока для вихрей первой и второй степени. |
format |
Article |
author |
Салтанов, В.Н. Ревенко, Ю.В. Ефремова, Н.С. |
spellingShingle |
Салтанов, В.Н. Ревенко, Ю.В. Ефремова, Н.С. Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере |
author_facet |
Салтанов, В.Н. Ревенко, Ю.В. Ефремова, Н.С. |
author_sort |
Салтанов, В.Н. |
title |
Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере |
title_short |
Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере |
title_full |
Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере |
title_fullStr |
Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере |
title_full_unstemmed |
Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере |
title_sort |
приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере |
publisher |
Інститут гідромеханіки НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/4791 |
citation_txt |
Приближенный подход в теории винтовых и потенциальных течений в изотермической атмосфере / В. Н.Салтанов, Ю. В. Ревенко, Н. С. Ефремова // Прикладна гідромеханіка. — 2005. — Т. 7, № 2. — С. 63-72. — Бібліогр.: 51 назв. — рос. |
work_keys_str_mv |
AT saltanovvn približennyjpodhodvteoriivintovyhipotencialʹnyhtečenijvizotermičeskojatmosfere AT revenkoûv približennyjpodhodvteoriivintovyhipotencialʹnyhtečenijvizotermičeskojatmosfere AT efremovans približennyjpodhodvteoriivintovyhipotencialʹnyhtečenijvizotermičeskojatmosfere |
first_indexed |
2023-03-24T08:31:17Z |
last_indexed |
2023-03-24T08:31:17Z |
_version_ |
1796139212931596288 |