Stacking layer sequence effects for glass fibre/epoxy resin cross-ply laminates

This work describes the effect of the stacking sequence over the distribution of the deformation and stress fields through the thickness of the laminate. The laminates are made of epoxy resin and glass fibres, having the ratio of 0 to 90° plies equal to 1. This stacking sequence is applied to obtain...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Harkati, E.H., Bezazi, A., Guenfoud, M., Scarpa, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2007
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/48058
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Stacking layer sequence effects for glass fibre/epoxy resin cross-ply laminates / E.H. Harkati, A. Bezazi, M. Guenfoud, F. Scarpa // Проблемы прочности. — 2007. — № 3. — С. 134-146. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This work describes the effect of the stacking sequence over the distribution of the deformation and stress fields through the thickness of the laminate. The laminates are made of epoxy resin and glass fibres, having the ratio of 0 to 90° plies equal to 1. This stacking sequence is applied to obtain composite laminates with different thicknesses. The study presented in this paper is focused on the linear static behaviour of the cross/ply laminates by means of finite-element models developed using the commercial codes ANSYS 6.1 and LUSAS 15.3. The numerical models represent three-point bending loading cases. A viscoelastic analysis of the laminates based on the correspondence principle is also performed. The results from the finite element models show good agreement with those obtained using the Classical Laminate theory, while the viscoelastic storage modulus and loss factors distribution indicate the best stacking sequences for structural dynamics applications, such as spring leaves for novel car suspension systems.