Hot-cracking of high-alloyed steels evaluated by wedge rolling test
We present a new methodology of determination of hot-cracking f metallic materials, which is based on laboratory application of the wedge rolling test and computer processing of the results obtained. The experiment was made with selected new types of high-alloyed free-cutting (ferritic and austeniti...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2008
|
Назва видання: | Проблемы прочности |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/48459 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hot-cracking of high-alloyed steels evaluated by wedge rolling test / I. Schindler, P. Suchanek, S. Rusz, P. Kubecka, J. Sojka, M. Heger, M. Liska, M. Hlisnikovsky // Проблемы прочности. — 2008. — № 1. — С. 60-63. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We present a new methodology of determination of hot-cracking f metallic materials, which is based on laboratory application of the wedge rolling test and computer processing of the results obtained. The experiment was made with selected new types of high-alloyed free-cutting (ferritic and austenitic) steels. The initial specimens underwent an additional modification enabling easier development of cracks which consisted in milling out of the defined V-shaped notches on a side wall of a specimen. After taking specimens from the rolled material, we performed the metallographic analysis of microstructures by means of optical microscopy as well as a SEM analysis of the cracks. The resulting microstructure in the propagating crack vicinity was markedly influenced by this fracture. In the crack vicinity, a noticeable refinement of grains was observed due to the stress-induced recrystallization and occurrence of deformation zones that were pronounced by the rolled-out and stretched sulphides. As a rule, fractures were created by the ductile failure with visible pits, caused by tearing of sulphides from the material. Susceptibility of the studied steels to hot-cracking was evaluated and compared. |
---|