Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій

Побудова адаптивних алгоритмів методу граничних елементів (МГЕ) набуває все більшого інтересу. На сьогодні опубліковано значну кількість різноманітних підходів та методів такої побудови. Проте, у більшості із цих алгоритмів критерій адаптації базується на нев’язці граничного інтегрального рівняння,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Дияк, І.І., Макар, І.Г., Ящук, Ю.О.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2010
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/48772
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій / І.І. Дияк, І.Г. Макар, Ю.О. Ящук // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 76-85. — Бібліогр.: 7 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-48772
record_format dspace
spelling irk-123456789-487722013-09-03T03:03:01Z Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій Дияк, І.І. Макар, І.Г. Ящук, Ю.О. Побудова адаптивних алгоритмів методу граничних елементів (МГЕ) набуває все більшого інтересу. На сьогодні опубліковано значну кількість різноманітних підходів та методів такої побудови. Проте, у більшості із цих алгоритмів критерій адаптації базується на нев’язці граничного інтегрального рівняння, або на різниці між результатами на різних сітках. У даній роботі ми пропонуємо використати в якості критерію адаптації оцінку кривини розв’язку. Ця величина визначає похибку апроксимації невідомих функцій на границі, яка і робить основний внесок у похибку результату МГЕ. Для визначення кривини запропоновано використати результати, отримані на попередньому кроці ітеративного процесу адаптації. На основі цих ідей розроблено h-адаптивну версію прямого МГЕ для розв’язування плоскої задачі пружності. Також застосовано нову техніку апостеріорної оцінки похибки скінченноелементного розв’язку, що використовує скінченноелементну та граничноелементну апроксимацію напружень. Достовірність алгоритмів підтверджується тестовими прикладами. The construction of adaptive algorithms for boundary element method (BEM) is currently gaining increasing interest. Various approaches and methods have been published recently. However, in most of the existing algorithms the criteria of adaptivity is based on the residual of the boundary integral equation or the relationship between the numerical results on different meshes. In this paper we propose to use the estimation of the solution’s curvature as an adaptive criteria. This quantity determines the approximating error of the unknown functions on the boundary, which makes the main contribution to the final error of the BEM. To define the curvature we use the results, obtained on the previous step of the iterative adaptive process. An h-adaptive scheme of direct BEM for solving 2-D elasticity problem was developed using these ideas. A new technique for the a posteriori error estimation for the finite element solution of the linear elasticity is used both finite and boundary element approximation of stresses also. The validity of the algorithms was verified by solving example problems. 2010 Article Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій / І.І. Дияк, І.Г. Макар, Ю.О. Ящук // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 76-85. — Бібліогр.: 7 назв. — укр. XXXX-0059 http://dspace.nbuv.gov.ua/handle/123456789/48772 517.958:519.6 uk Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
description Побудова адаптивних алгоритмів методу граничних елементів (МГЕ) набуває все більшого інтересу. На сьогодні опубліковано значну кількість різноманітних підходів та методів такої побудови. Проте, у більшості із цих алгоритмів критерій адаптації базується на нев’язці граничного інтегрального рівняння, або на різниці між результатами на різних сітках. У даній роботі ми пропонуємо використати в якості критерію адаптації оцінку кривини розв’язку. Ця величина визначає похибку апроксимації невідомих функцій на границі, яка і робить основний внесок у похибку результату МГЕ. Для визначення кривини запропоновано використати результати, отримані на попередньому кроці ітеративного процесу адаптації. На основі цих ідей розроблено h-адаптивну версію прямого МГЕ для розв’язування плоскої задачі пружності. Також застосовано нову техніку апостеріорної оцінки похибки скінченноелементного розв’язку, що використовує скінченноелементну та граничноелементну апроксимацію напружень. Достовірність алгоритмів підтверджується тестовими прикладами.
format Article
author Дияк, І.І.
Макар, І.Г.
Ящук, Ю.О.
spellingShingle Дияк, І.І.
Макар, І.Г.
Ящук, Ю.О.
Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
author_facet Дияк, І.І.
Макар, І.Г.
Ящук, Ю.О.
author_sort Дияк, І.І.
title Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій
title_short Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій
title_full Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій
title_fullStr Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій
title_full_unstemmed Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій
title_sort побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/48772
citation_txt Побудова та дослідження чисельних розв’язків задач теорії пружності на основі h-адаптивних апроксимацій / І.І. Дияк, І.Г. Макар, Ю.О. Ящук // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 76-85. — Бібліогр.: 7 назв. — укр.
series Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
work_keys_str_mv AT diâkíí pobudovatadoslídžennâčiselʹnihrozvâzkívzadačteoríípružnostínaosnovíhadaptivnihaproksimacíj
AT makaríg pobudovatadoslídžennâčiselʹnihrozvâzkívzadačteoríípružnostínaosnovíhadaptivnihaproksimacíj
AT âŝukûo pobudovatadoslídžennâčiselʹnihrozvâzkívzadačteoríípružnostínaosnovíhadaptivnihaproksimacíj
first_indexed 2023-10-18T18:10:45Z
last_indexed 2023-10-18T18:10:45Z
_version_ 1796143516114485248