Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації
Представлено два методи побудови опуклого продовження кубічного многочлена на переставленнях — один метод аналітичний, другий — ітераційний, який є модифікацією метода Стояна-Яковлева побудови опуклих продовжень многочленів на вершинно розташованих множинах. Продемонстровано переваги аналітичного ме...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2010
|
Назва видання: | Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/48781 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації / О.С. Пічугіна // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 176-189. — Бібліогр.: 7 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-48781 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-487812013-09-03T03:04:16Z Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації Пічугіна, О.С. Представлено два методи побудови опуклого продовження кубічного многочлена на переставленнях — один метод аналітичний, другий — ітераційний, який є модифікацією метода Стояна-Яковлева побудови опуклих продовжень многочленів на вершинно розташованих множинах. Продемонстровано переваги аналітичного методу — можливість записати шукане опукле продовження в явному вигляді, використовуючи коефіцієнти вихідної функції й мультимножину, з якої формуються переставлення, а також суттєве зменшення кількості доданків у результуючому виразі порівняно з ітераційним методом. Побудова опуклих продовжень многочленів дозволяє використовувати апарат опуклого програмування для розв'язування практичних задач, що формулюються в вигляді оптимізаційних із поліноміальною цільовою функцією на переставленнях. Two methods of constructing convex extension of cubic polynomials on permutations are presented. One of them is analytical method and the second iterative method is a modification of Stoyan-Yakovlev’s method of constructing convex extension of polynomials given on sets located in vertices. The advantages of the analytical method, such as the method make it possible to write the convex extension in the explicit form in terms of target function coefficients and multisets elements as well as essential reducing amount of items in resulting expression compare with the iterative method, is demonstrated. Constructing convex extension of polynomials allows to use convex programming for solving practical problems, formulated as optimization problems with polynomial target function on permutations. 2010 Article Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації / О.С. Пічугіна // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 176-189. — Бібліогр.: 7 назв. — укр. XXXX-0059 http://dspace.nbuv.gov.ua/handle/123456789/48781 519.85 uk Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Ukrainian |
description |
Представлено два методи побудови опуклого продовження кубічного многочлена на переставленнях — один метод аналітичний, другий — ітераційний, який є модифікацією метода Стояна-Яковлева побудови опуклих продовжень многочленів на вершинно розташованих множинах. Продемонстровано переваги аналітичного методу — можливість записати шукане опукле продовження в явному вигляді, використовуючи коефіцієнти вихідної функції й мультимножину, з якої формуються переставлення, а також суттєве зменшення кількості доданків у результуючому виразі порівняно з ітераційним методом. Побудова опуклих продовжень многочленів дозволяє використовувати апарат опуклого програмування для розв'язування практичних задач, що формулюються в вигляді оптимізаційних із поліноміальною цільовою функцією на переставленнях. |
format |
Article |
author |
Пічугіна, О.С. |
spellingShingle |
Пічугіна, О.С. Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки |
author_facet |
Пічугіна, О.С. |
author_sort |
Пічугіна, О.С. |
title |
Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації |
title_short |
Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації |
title_full |
Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації |
title_fullStr |
Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації |
title_full_unstemmed |
Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації |
title_sort |
опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації |
publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/48781 |
citation_txt |
Опукле продовження кубічних многочленів на переставленнях та його застосування у розв’язанні практичних задач оптимізації / О.С. Пічугіна // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 4. — С. 176-189. — Бібліогр.: 7 назв. — укр. |
series |
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки |
work_keys_str_mv |
AT píčugínaos opukleprodovžennâkubíčnihmnogočlenívnaperestavlennâhtajogozastosuvannâurozvâzannípraktičnihzadačoptimízacíí |
first_indexed |
2023-10-18T18:10:47Z |
last_indexed |
2023-10-18T18:10:47Z |
_version_ |
1796143517071835136 |