Об одном классе модулей над целочисленными групповыми кольцами разрешимых групп
Исследован ZG-модуль A такой, что Z — кольцо целых чисел, A/CA(G) не является минимаксным Z-модулем, CG(A)=1, G — разрешимая группа. Рассмотрена система Lnm(G) всех подгрупп H≤G, для которых фактормодули A/CA(H) не являются минимаксными Z-модулями. Изучен ZG-модуль A такой, что Lnm(G) удовлетворяет...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2012
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/49342 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Об одном классе модулей над целочисленными групповыми кольцами разрешимых групп / О.Ю. Дашкова // Доп. НАН України. — 2012. — № 3. — С. 19-23. — Бібліогр.: 9 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Исследован ZG-модуль A такой, что Z — кольцо целых чисел, A/CA(G) не является минимаксным Z-модулем, CG(A)=1, G — разрешимая группа. Рассмотрена система Lnm(G) всех подгрупп H≤G, для которых фактормодули A/CA(H) не являются минимаксными Z-модулями. Изучен ZG-модуль A такой, что Lnm(G) удовлетворяет условию максимальности как упорядоченное множество. Описана структура разрешимой группы G, удовлетворяющей заданным условиям. |
---|