Ультраметризация взвешенных графов
Пусть (G,w) — взвешенный граф. Найдены необходимые и достаточные условия, при которых вес w:E(G)→R^+ продолжается до псевдоультраметрики на V(G), получен критерий единственности такого продолжения. Доказано, что граф является полным k-дольным с k≥2 тогда и только тогда, когда для любого веса, продол...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2012
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/50011 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Ультраметризация взвешенных графов / А.А. Довгошей, Е.А. Петров // Доп. НАН України. — 2012. — № 6. — С. 17-23. — Бібліогр.: 12 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Пусть (G,w) — взвешенный граф. Найдены необходимые и достаточные условия, при которых вес w:E(G)→R^+ продолжается до псевдоультраметрики на V(G), получен критерий единственности такого продолжения. Доказано, что граф является полным k-дольным с k≥2 тогда и только тогда, когда для любого веса, продолжающегося до псевдоультраметрики, среди всех таких продолжений найдется наименьшая псевдоультраметрика. Дана структурная характеристика графов, для которых субдоминантная псевдоультраметрика является ультраметрикой для любого строго положительного веса, продолжающегося до псевдоультраметрики. |
---|