2025-02-22T09:56:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-50036%22&qt=morelikethis&rows=5
2025-02-22T09:56:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-50036%22&qt=morelikethis&rows=5
2025-02-22T09:56:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T09:56:00-05:00 DEBUG: Deserialized SOLR response
Построение решающего правила для классификации образов на основе векторов ошибок
Построено отображение множества образов на множество векторов ошибок распознавания образов нейронною сетью, которое позволяет связать классификацию образов с анализом векторов в пространстве ошибок. Векторный критерий позволяет группировать образы, распознавать, сравнивать и анализировать их. Обосно...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2013
|
Series: | Системні дослідження та інформаційні технології |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/50036 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Построено отображение множества образов на множество векторов ошибок распознавания образов нейронною сетью, которое позволяет связать классификацию образов с анализом векторов в пространстве ошибок. Векторный критерий позволяет группировать образы, распознавать, сравнивать и анализировать их. Обоснованы и развиты методы теории нейронных сетей применительно к решению задачи распознавания сигналов с использованием критерия близости распознаваемых образов в пространстве ошибок распознавания. Сформулирован взвешенный критерий близости образов сигналов в пространстве ошибок. Предложен алгоритм перехода из пространства параметров образов в пространство ошибок распознавания образов. Построено оптимальное решающее правило для классификации образов сигналов с использованием взвешенного критерия близости распознаваемых образов в пространстве ошибок распознавания. Достоверность полученных научных результатов, выводов и рекомендаций работы подтверждена результатами экспериментальных исследований разработанной универсальной системы интеллектуального анализа данных, которая решает задачи распознавания объектов электрооптических изображений NEFClass BGCGG (Neuro Fuzzy Classifier (Basic Gradient Conjugate Gradient, Genetic) — Нейро-нечеткий классификатор (Базовый, Градиент, Сопряженный Градиент, Генетический)), проведенных на базе «Института прикладного системного анализа» НТУУ «КПИ». Полученные в работе результаты, наглядно демонстрируют эффективность использования разработанных моделей, методов и алгоритмов для решения задач распознавания сигналов. |
---|