Построение решающего правила для классификации образов на основе векторов ошибок
Построено отображение множества образов на множество векторов ошибок распознавания образов нейронною сетью, которое позволяет связать классификацию образов с анализом векторов в пространстве ошибок. Векторный критерий позволяет группировать образы, распознавать, сравнивать и анализировать их. Обосно...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2013
|
Назва видання: | Системні дослідження та інформаційні технології |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/50036 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Построение решающего правила для классификации образов на основе векторов ошибок / П.В. Четырбок // Систем. дослідж. та інформ. технології. — 2013. — № 2. — С. 114-120. — Бібліогр.: 3 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Построено отображение множества образов на множество векторов ошибок распознавания образов нейронною сетью, которое позволяет связать классификацию образов с анализом векторов в пространстве ошибок. Векторный критерий позволяет группировать образы, распознавать, сравнивать и анализировать их. Обоснованы и развиты методы теории нейронных сетей применительно к решению задачи распознавания сигналов с использованием критерия близости распознаваемых образов в пространстве ошибок распознавания. Сформулирован взвешенный критерий близости образов сигналов в пространстве ошибок. Предложен алгоритм перехода из пространства параметров образов в пространство ошибок распознавания образов. Построено оптимальное решающее правило для классификации образов сигналов с использованием взвешенного критерия близости распознаваемых образов в пространстве ошибок распознавания. Достоверность полученных научных результатов, выводов и рекомендаций работы подтверждена результатами экспериментальных исследований разработанной универсальной системы интеллектуального анализа данных, которая решает задачи распознавания объектов электрооптических изображений NEFClass BGCGG (Neuro Fuzzy Classifier (Basic Gradient Conjugate Gradient, Genetic) — Нейро-нечеткий классификатор (Базовый, Градиент, Сопряженный Градиент, Генетический)), проведенных на базе «Института прикладного системного анализа» НТУУ «КПИ». Полученные в работе результаты, наглядно демонстрируют эффективность использования разработанных моделей, методов и алгоритмов для решения задач распознавания сигналов. |
---|