Piecewise uniform switched vector quantization of the memoryless two-dimensional Laplacian source
A simple and complete asymptotical analysis of an optimal piecewise uniform quantization of two-dimensional memoryless Laplacian source with the respect to distortion (D) i.e. the mean-square error (MSE) is presented. Piecewise uniform quantization consists of L different uniform vector quantizers....
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем реєстрації інформації НАН України
2004
|
Назва видання: | Реєстрація, зберігання і обробка даних |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/50641 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Piecewise uniform switched vector quantization of the memoryless two-dimensional Laplacian source / Zoran H. Peric, Ivana Lj. Tosic // Реєстрація, зберігання і оброб. даних. — 2004. — Т. 6, № 1. — С. 20-33. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A simple and complete asymptotical analysis of an optimal piecewise uniform quantization of two-dimensional memoryless Laplacian source with the respect to distortion (D) i.e. the mean-square error (MSE) is presented. Piecewise uniform quantization consists of L different uniform vector quantizers. Uniform quantizer optimality conditions and all main equations for optimal number of output points and levels for each partition are presented (using rectangular cells). The optimal granular distortion Doptg (i) for each partition in a closed form is derived. Switched quantization is used in order to give higher quality by increasing signal-to-quantization noise ratio (SQNR) in a wide range of signal volumes (variances) or to decrease necessary sample rate. |
---|