2025-02-23T18:29:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-5067%22&qt=morelikethis&rows=5
2025-02-23T18:29:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-5067%22&qt=morelikethis&rows=5
2025-02-23T18:29:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T18:29:00-05:00 DEBUG: Deserialized SOLR response

Обобщенные потенциалы в магнитной гидродинамике и динамике вращающейся жидкости

На основе обобщенных потенциалов общее решение линеаризованной системы уравнений магнитной гидродинамики идеальной проводящей жидкости, находящейся в постоянном магнитном поле, в явном виде представлено через общие решения двух однородных волновых уравнений с альфвеновскими скоростями распространени...

Full description

Saved in:
Bibliographic Details
Main Author: Салтанов, Н.В.
Format: Article
Language:Russian
Published: Інститут гідромеханіки НАН України 2000
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/5067
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:На основе обобщенных потенциалов общее решение линеаризованной системы уравнений магнитной гидродинамики идеальной проводящей жидкости, находящейся в постоянном магнитном поле, в явном виде представлено через общие решения двух однородных волновых уравнений с альфвеновскими скоростями распространения сигналов и общее решение уравнения Лапласа. Проведено аналогичное преобразование линеаризованной системы уравнений магнитной гидродинамики диссипативной проводящей жидкости , также находящейся в постоянном магнитном поле. Задача сведена к решению трех независимых уравнений для трех обобщенных потенциалов. При наличии циклической координаты система уравнений магнитной гидродинамики диссипативной вращающейся жидкости в нелинейном случае сведена к системе четырех нелинейных уравнений в частных производных, служащей для определения функции тока, ее магнитного аналога и третьих компонент скорости и магнитного поля. Отмечено, что при отсутствии вращения эта система переходит в известную. Линеаризованная система уравнений динамики вращающейся жидкости в приближении мелкой воды сведена к одному линейному дифференциальному уравнению в частных производных третьего порядка, служащему для определения обобщенного потенциала. На основе полученного уравнения для обобщенного потенциала рассмотрена задача о сейшевых колебаниях в бассейне, глубина которого является кусочно-линейной функцией поперечной координаты. Проведено сравнение полученных результатов с результатами других авторов.