Обобщенные потенциалы в магнитной гидродинамике и динамике вращающейся жидкости
На основе обобщенных потенциалов общее решение линеаризованной системы уравнений магнитной гидродинамики идеальной проводящей жидкости, находящейся в постоянном магнитном поле, в явном виде представлено через общие решения двух однородных волновых уравнений с альфвеновскими скоростями распространени...
Збережено в:
Дата: | 2000 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут гідромеханіки НАН України
2000
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/5067 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Обобщенные потенциалы в магнитной гидродинамике и динамике вращающейся жидкости / Н.В. Салтанов // Прикладна гідромеханіка. — 2000. — Т. 2, № 4. — С. 82-98. — Бібліогр.: 72 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | На основе обобщенных потенциалов общее решение линеаризованной системы уравнений магнитной гидродинамики идеальной проводящей жидкости, находящейся в постоянном магнитном поле, в явном виде представлено через общие решения двух однородных волновых уравнений с альфвеновскими скоростями распространения сигналов и общее решение уравнения Лапласа. Проведено аналогичное преобразование линеаризованной системы уравнений магнитной гидродинамики диссипативной проводящей жидкости , также находящейся в постоянном магнитном поле. Задача сведена к решению трех независимых уравнений для трех обобщенных потенциалов. При наличии циклической координаты система уравнений магнитной гидродинамики диссипативной вращающейся жидкости в нелинейном случае сведена к системе четырех нелинейных уравнений в частных производных, служащей для определения функции тока, ее магнитного аналога и третьих компонент скорости и магнитного поля. Отмечено, что при отсутствии вращения эта система переходит в известную. Линеаризованная система уравнений динамики вращающейся жидкости в приближении мелкой воды сведена к одному линейному дифференциальному уравнению в частных производных третьего порядка, служащему для определения обобщенного потенциала. На основе полученного уравнения для обобщенного потенциала рассмотрена задача о сейшевых колебаниях в бассейне, глубина которого является кусочно-линейной функцией поперечной координаты. Проведено сравнение полученных результатов с результатами других авторов. |
---|