Искусственная нейронная сеть как измерительный инструмент адекватности модели с адаптивным классом точности
Работа посвящена проблеме количественной оценки надежности и точности функционирования модели сложной социотехнической системы с адаптивным выбором класса точности на основе учета особенностей предметной области. Показано, что интегральную ошибку на выходе искусственной нейронной сети (ИНС) в процес...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут проблем математичних машин і систем НАН України
2010
|
Назва видання: | Математичні машини і системи |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/51608 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Искусственная нейронная сеть как измерительный инструмент адекватности модели с адаптивным классом точности / А.Л. Ляхов, С.П. Алешин // Мат. машини і системи. — 2010. — № 2. — С. 61-66. — Бібліогр.: 14 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Работа посвящена проблеме количественной оценки надежности и точности функционирования модели сложной социотехнической системы с адаптивным выбором класса точности на основе учета особенностей предметной области. Показано, что интегральную ошибку на выходе искусственной нейронной сети (ИНС) в процессе обучения целесообразно измерять в каждой эпохе и, используя критерий согласия Смирнова, ставить в соответствии со статистическим уровнем значимости. В этой ситуации ИНС приобретает свойство измерительного инструмента с изменяемым классом точности. Это позволяет учесть особенности предметной области системы, автоматизировать расчет признака окончания обучения и распространить область применения статистических критериев на выбор параметров обучения искусственной нейронной сети. |
---|