Группы Ли и автомодельные формы уравнений Прандтля

Основываясь на теории групп Ли, получены автомодельные переменные, функции и дифференциальные уравнения, включая общее уравнение Блазиуса. Показано, что форма общего обыкновенного дифференциального уравнения определяется выбором параметрической переменной. Используя свойства симметрии, общее уравнен...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автор: Авраменко, А.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут гідромеханіки НАН України 1999
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/5185
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Группы Ли и автомодельные формы уравнений Прандтля / А.А. Авраменко // Прикладна гідромеханіка. — 1999. — Т. 1, № 2. — С. 3-11. — Бібліогр.: 11 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Основываясь на теории групп Ли, получены автомодельные переменные, функции и дифференциальные уравнения, включая общее уравнение Блазиуса. Показано, что форма общего обыкновенного дифференциального уравнения определяется выбором параметрической переменной. Используя свойства симметрии, общее уравнение Блазиуса было редуцировано к уравнению первого порядка. Получено два новых автомодельных решения уравнений Прандтля. Показан способ трансформации однопараметрической алгебры Ли уравнений Прандтля, содержащей четыре подалгебры, к алгебре Прандтля с тремя подалгебрами, одна из которых является двухпараметрической.