Інваріантні тори локально гамільтонових систем, близьких до умовно інтегровних

Проведен анализ проблемы возмущений квазипериодических движений в классе локально гамильтоновых систем. Методами КАМ-теории доказана теорема о существовании инвариантных торов локально гамильтоновых систем, близких к условно интегрируемым. С помощью этой теоремы исследована бифуркация канторового мн...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Ловейкін, Ю.В., Парасюк, І.О.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/5516
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Інваріантні тори локально гамільтонових систем, близьких до умовно інтегровних / Ю.В. Ловейкін, І.О. Парасюк // Укр. мат. журн. — 2007. — Т. 59, № 1. — С. 71-98. — Бібліогр.: 14 назв. — укp.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Проведен анализ проблемы возмущений квазипериодических движений в классе локально гамильтоновых систем. Методами КАМ-теории доказана теорема о существовании инвариантных торов локально гамильтоновых систем, близких к условно интегрируемым. С помощью этой теоремы исследована бифуркация канторового множества инвариантных торов в случае, когда интегрируемая по Лиувиллю система возмущается локально гамильтоновым векторным полем и одновременно испытывает деформацию симплектическая структура фазового пространства.