A Class of Distal Functions on Semitopological Semigroups

The norm closure of the algebra generated by the set {n→λ^nk : λ belongs T and k belongs N} of functions on (Z,+) was studied in [11] (and was named as the Weyl algebra). In this paper, by a fruitful result of Namioka, this algebra is generalized for a general semitopological semigroup and, among ot...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Jabbari, A., Vishki, H.R.E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/5706
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A class of distal functions on semitopological semigroups / A. Jabbari, H.R.E. Vishki // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 2. — С. 188-194. — Бібліогр.: 11 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-5706
record_format dspace
spelling irk-123456789-57062010-02-03T12:01:11Z A Class of Distal Functions on Semitopological Semigroups Jabbari, A. Vishki, H.R.E. The norm closure of the algebra generated by the set {n→λ^nk : λ belongs T and k belongs N} of functions on (Z,+) was studied in [11] (and was named as the Weyl algebra). In this paper, by a fruitful result of Namioka, this algebra is generalized for a general semitopological semigroup and, among other things, it is shown that the elements of the involved algebra are distal. In particular, we examine this algebra for (Z,+) and (more generally) for the discrete (additive) group of any countable ring. Finally, our results are treated for a bicyclic semigroup. 2009 Article A class of distal functions on semitopological semigroups / A. Jabbari, H.R.E. Vishki // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 2. — С. 188-194. — Бібліогр.: 11 назв. — англ. 1029-3531 http://dspace.nbuv.gov.ua/handle/123456789/5706 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The norm closure of the algebra generated by the set {n→λ^nk : λ belongs T and k belongs N} of functions on (Z,+) was studied in [11] (and was named as the Weyl algebra). In this paper, by a fruitful result of Namioka, this algebra is generalized for a general semitopological semigroup and, among other things, it is shown that the elements of the involved algebra are distal. In particular, we examine this algebra for (Z,+) and (more generally) for the discrete (additive) group of any countable ring. Finally, our results are treated for a bicyclic semigroup.
format Article
author Jabbari, A.
Vishki, H.R.E.
spellingShingle Jabbari, A.
Vishki, H.R.E.
A Class of Distal Functions on Semitopological Semigroups
author_facet Jabbari, A.
Vishki, H.R.E.
author_sort Jabbari, A.
title A Class of Distal Functions on Semitopological Semigroups
title_short A Class of Distal Functions on Semitopological Semigroups
title_full A Class of Distal Functions on Semitopological Semigroups
title_fullStr A Class of Distal Functions on Semitopological Semigroups
title_full_unstemmed A Class of Distal Functions on Semitopological Semigroups
title_sort class of distal functions on semitopological semigroups
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/5706
citation_txt A class of distal functions on semitopological semigroups / A. Jabbari, H.R.E. Vishki // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 2. — С. 188-194. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT jabbaria aclassofdistalfunctionsonsemitopologicalsemigroups
AT vishkihre aclassofdistalfunctionsonsemitopologicalsemigroups
AT jabbaria classofdistalfunctionsonsemitopologicalsemigroups
AT vishkihre classofdistalfunctionsonsemitopologicalsemigroups
first_indexed 2023-03-24T08:34:13Z
last_indexed 2023-03-24T08:34:13Z
_version_ 1796139299922509824