A Class of Distal Functions on Semitopological Semigroups
The norm closure of the algebra generated by the set {n→λ^nk : λ belongs T and k belongs N} of functions on (Z,+) was studied in [11] (and was named as the Weyl algebra). In this paper, by a fruitful result of Namioka, this algebra is generalized for a general semitopological semigroup and, among ot...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/5706 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A class of distal functions on semitopological semigroups / A. Jabbari, H.R.E. Vishki // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 2. — С. 188-194. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-5706 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-57062010-02-03T12:01:11Z A Class of Distal Functions on Semitopological Semigroups Jabbari, A. Vishki, H.R.E. The norm closure of the algebra generated by the set {n→λ^nk : λ belongs T and k belongs N} of functions on (Z,+) was studied in [11] (and was named as the Weyl algebra). In this paper, by a fruitful result of Namioka, this algebra is generalized for a general semitopological semigroup and, among other things, it is shown that the elements of the involved algebra are distal. In particular, we examine this algebra for (Z,+) and (more generally) for the discrete (additive) group of any countable ring. Finally, our results are treated for a bicyclic semigroup. 2009 Article A class of distal functions on semitopological semigroups / A. Jabbari, H.R.E. Vishki // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 2. — С. 188-194. — Бібліогр.: 11 назв. — англ. 1029-3531 http://dspace.nbuv.gov.ua/handle/123456789/5706 en Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The norm closure of the algebra generated by the set {n→λ^nk : λ belongs T and k belongs N} of functions on (Z,+) was studied in [11] (and was named as the Weyl algebra). In this paper, by a fruitful result of Namioka, this algebra is generalized for a general semitopological semigroup and, among other things, it is shown that the elements of the involved algebra are distal. In particular, we examine this algebra for (Z,+) and (more generally) for the discrete (additive) group of any countable ring. Finally, our results are treated for a bicyclic semigroup. |
format |
Article |
author |
Jabbari, A. Vishki, H.R.E. |
spellingShingle |
Jabbari, A. Vishki, H.R.E. A Class of Distal Functions on Semitopological Semigroups |
author_facet |
Jabbari, A. Vishki, H.R.E. |
author_sort |
Jabbari, A. |
title |
A Class of Distal Functions on Semitopological Semigroups |
title_short |
A Class of Distal Functions on Semitopological Semigroups |
title_full |
A Class of Distal Functions on Semitopological Semigroups |
title_fullStr |
A Class of Distal Functions on Semitopological Semigroups |
title_full_unstemmed |
A Class of Distal Functions on Semitopological Semigroups |
title_sort |
class of distal functions on semitopological semigroups |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/5706 |
citation_txt |
A class of distal functions on semitopological semigroups / A. Jabbari, H.R.E. Vishki // Methods of Functional Analysis and Topology. — 2009. — Т. 15, № 2. — С. 188-194. — Бібліогр.: 11 назв. — англ. |
work_keys_str_mv |
AT jabbaria aclassofdistalfunctionsonsemitopologicalsemigroups AT vishkihre aclassofdistalfunctionsonsemitopologicalsemigroups AT jabbaria classofdistalfunctionsonsemitopologicalsemigroups AT vishkihre classofdistalfunctionsonsemitopologicalsemigroups |
first_indexed |
2023-03-24T08:34:13Z |
last_indexed |
2023-03-24T08:34:13Z |
_version_ |
1796139299922509824 |