Асимптотический анализ краевых задач в густых каскадных соединениях
We consider the homogenization problem in a singularly perturbed two-dimensional domain of a new type, which consists of a body of junction and a great number of alternating thin rods belonging to two classes. Under the assumption that one class consists of rods of finite length and the other consis...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2008
|
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/5818 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Асимптотический анализ краевых задач в густых каскадных соединениях / Т.А. Мельник, Г.А. Чечкин // Доп. НАН України. — 2008. — № 9. — С. 16-22. — Бібліогр.: 9 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider the homogenization problem in a singularly perturbed two-dimensional domain of a new type, which consists of a body of junction and a great number of alternating thin rods belonging to two classes. Under the assumption that one class consists of rods of finite length and the other consists of rods of small length and inhomogeneous Fourier boundary conditions (boundary conditions of the third type) with perturbed coefficients are set on the boundaries of thin rods, we prove the homogenization theorems and the convergence of the energy integrals. |
---|