Исследование магнитного поля высоковольтных линий электропередачи переменного тока
The mathematical model of the 50 Hz three-phase overhead power transmission line and the engineering method of the calculation of the root mean square value of the magnetic field density are developed on the base of Biot–Savart’s and Laplace’s equations. The results of the experimental verification...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут електродинаміки НАН України
2012
|
Schriftenreihe: | Технічна електродинаміка |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/62051 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Исследование магнитного поля высоковольтных линий электропередачи переменного тока / В.Ю. Розов, С.Ю. Реуцкий, Д.Е. Пелевин, В.М. Яковенко // Технічна електродинаміка. — 2012. — № 1. — С. 3-9. — Бібліогр.: 9 назв. — pос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-62051 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-620512014-05-17T03:00:50Z Исследование магнитного поля высоковольтных линий электропередачи переменного тока Розов, В.Ю. Реуцкий, С.Ю. Пелевин, Д.Е. Яковенко, В.М. Теоретична електротехніка та електрофізика The mathematical model of the 50 Hz three-phase overhead power transmission line and the engineering method of the calculation of the root mean square value of the magnetic field density are developed on the base of Biot–Savart’s and Laplace’s equations. The results of the experimental verification of the method developed are presented. They have been carried out on three operating transmission lines with the voltage 330 kV. The data show that the method developed provides the acceptable precision of the calculation with the relative error less than 10% at the distance of more than 10 m from the line. It is shown that with the nominal current 2 kA the induction of the magnetic field is equal to 3,7 μT on the border of the transmission line protection zone (38 m). It decreases to the safe level of 0,5 μT at the distance of more than 100 m from the line. This raises the problem of the formation of the size of sanitary protection zones taking into account not only electrical field but also the magnetic field. 2012 Article Исследование магнитного поля высоковольтных линий электропередачи переменного тока / В.Ю. Розов, С.Ю. Реуцкий, Д.Е. Пелевин, В.М. Яковенко // Технічна електродинаміка. — 2012. — № 1. — С. 3-9. — Бібліогр.: 9 назв. — pос. 0204-3599 http://dspace.nbuv.gov.ua/handle/123456789/62051 621.3.013 ru Технічна електродинаміка Інститут електродинаміки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Теоретична електротехніка та електрофізика Теоретична електротехніка та електрофізика |
spellingShingle |
Теоретична електротехніка та електрофізика Теоретична електротехніка та електрофізика Розов, В.Ю. Реуцкий, С.Ю. Пелевин, Д.Е. Яковенко, В.М. Исследование магнитного поля высоковольтных линий электропередачи переменного тока Технічна електродинаміка |
description |
The mathematical model of the 50 Hz three-phase overhead power transmission line and the engineering method of the calculation of the root mean square value of the magnetic field density are developed on the base of Biot–Savart’s and Laplace’s equations. The results of the experimental verification of the method developed are presented. They have been carried out on three operating transmission lines with the voltage 330 kV. The data show that the method developed provides the acceptable precision of the calculation with the relative error less than 10% at the distance of more than 10 m from the line. It is shown that with the nominal current 2 kA the induction of the magnetic field is equal to 3,7 μT on the border of the transmission line protection zone (38 m). It decreases to the safe level of 0,5 μT at the distance of more than 100 m from the line. This raises the problem of the formation of the size of sanitary protection zones taking into account not only electrical field but also the magnetic field. |
format |
Article |
author |
Розов, В.Ю. Реуцкий, С.Ю. Пелевин, Д.Е. Яковенко, В.М. |
author_facet |
Розов, В.Ю. Реуцкий, С.Ю. Пелевин, Д.Е. Яковенко, В.М. |
author_sort |
Розов, В.Ю. |
title |
Исследование магнитного поля высоковольтных линий электропередачи переменного тока |
title_short |
Исследование магнитного поля высоковольтных линий электропередачи переменного тока |
title_full |
Исследование магнитного поля высоковольтных линий электропередачи переменного тока |
title_fullStr |
Исследование магнитного поля высоковольтных линий электропередачи переменного тока |
title_full_unstemmed |
Исследование магнитного поля высоковольтных линий электропередачи переменного тока |
title_sort |
исследование магнитного поля высоковольтных линий электропередачи переменного тока |
publisher |
Інститут електродинаміки НАН України |
publishDate |
2012 |
topic_facet |
Теоретична електротехніка та електрофізика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/62051 |
citation_txt |
Исследование магнитного поля высоковольтных линий электропередачи переменного тока / В.Ю. Розов, С.Ю. Реуцкий, Д.Е. Пелевин, В.М. Яковенко // Технічна електродинаміка. — 2012. — № 1. — С. 3-9. — Бібліогр.: 9 назв. — pос. |
series |
Технічна електродинаміка |
work_keys_str_mv |
AT rozovvû issledovaniemagnitnogopolâvysokovolʹtnyhlinijélektroperedačiperemennogotoka AT reuckijsû issledovaniemagnitnogopolâvysokovolʹtnyhlinijélektroperedačiperemennogotoka AT pelevinde issledovaniemagnitnogopolâvysokovolʹtnyhlinijélektroperedačiperemennogotoka AT âkovenkovm issledovaniemagnitnogopolâvysokovolʹtnyhlinijélektroperedačiperemennogotoka |
first_indexed |
2025-07-05T12:55:12Z |
last_indexed |
2025-07-05T12:55:12Z |
_version_ |
1836811669104230400 |
fulltext |
ISSN 1607-7970. . . 2012. 1 3
621.3.013
. , .- . , . , ,
. , , . ,
,
. , 19, , 61106, .
-
( )
50 . 330 , -
( 10%)
10 . , (38 ) -
(2 ) 3,7 (0,5 )
100 , -
, . . 9, . 3.
: , , , , -
.
. 20- -
, ( ),
. C
, ,
[7, 8]. -
50(60) , 0,25 .
[9].
, , [3].
,
( ) 50 ,
0,5 10 .
, [4].
, , .
,
,
.
,
– .
.
–
. 50 ,
,
. , dH(t), i(t),
dl, [1,4]
.d
R
titd RlH 34
(1)
© ., ., ., ., 2012
4 ISSN 1607-7970. . . 2012. 1
R dl ti
z,y,xP . , L,
.
R
dtit,P
L
30 4
RlH
(2)
,
, .
i , ,
, , ,
2 4sin , sin , sin
3 3A m A B m B C m Ci t I t i t I t i t I t , (3)
Im – .
(3) P
, ,
3
4
3
2 tsinPtsinPtsinPP CBA HHHH , (4)
1 1 3, sin cos
2 2 2A B B CCP t P P P t P P tH H H H H H . (5)
HA, HB, HC – P(x, y, z).
, (5), -
. , x
tcosPHPHtsinPHPHPHt,PH x,Bx,Cx,Cx,Bx,Ax 2
3
2
1
2
1 . (6)
Hx(P,t) T=2 /
B= 0H,
x,Cx,Bx,Cx,Ax,Bx,Ax,Cx,Bx,Ax BBBBBBBBBPB~ 222
2
1 . (7)
PB~x PB~y , PB~z
,
,
P x, y, z .
, -
(3)–(7) -
( ) . -
( ) , ,
, [2, 6], .
(1), (2), (6), (7)
, .
, .
.
, [3].
, -
.
1).
.
2).
, .
3). .
4). ,
120 . .
5).
ISSN 1607-7970. . . 2012. 1 5
yyxx y,xHy,xHy,xH ee ,
y – , x – , .
. -
,
, ,
. [4]
x, y. -
Hz , , , -
.
i, -
(x0, y0),
[1]
0
0
, ,
2m
y yiU x y t arctg
x x
(8)
, ,
2
0
2
0
00
0 2 yyxx
yyi
x
Ut,y,xB m
x ,
(9)
2
0
2
0
00
0 2 yyxx
xxi
y
Ut,y,xB m
y .
(10)
(4)
, (7),
x,Cx,Bx,Cx,Ax,Bx,Ax,Cx,Bx,Ax BBBBBBBBBy,xB~ 222
2
1 ,
(11)
y,Cy,By,Cy,Ay,By,Ay,Cy,By,Ay BBBBBBBBBy,xB~ 222
2
1 ,
(12)
, (7),
22
0
2 AA
AA,m
x,A yyxx
yyI
y,xB , (13)
22
0
2 AA
AA,m
y,A
yyxx
xxI
y,xB . (14)
Im,A
tsinIti A,mA ; (xA, yA) -
,
. -
, (xA, yA) (xB, yB)
(xC, yC) . -
. 1.
-
, -
,
.
n=1, …, N
y,xB A
n,x , y,xBB
n,x , y,xBC
n,x y,xBA
n,y , y,xBB
n,y , y,xBC
n,y .
, , ,
1 1 1
, , , , , , , , ,
N N N
A A B B C C
x x n x x n x x n
n n n
B x y B x y B x y B x y B x y B x y (15)
. 1
6 ISSN 1607-7970. . . 2012. 1
, , ,
1 1 1
, , , , , , , ,
N N N
A A B B C C
y y n y y n y y n
n n n
B x y B x y B x y B x y B x y B x y . (16)
(11),
(12).
22
,~,~,~ yxByxByxB yx . (17)
,
(9) (17). ,
,
,
.
.
: 1). 330 « -
» 2 ,
; 2). 330 « » 2 -
, ; 3). 330
1,2» 2
.
, -
, .
Magnetoscop 1.069
Foerster 2,5% 1
. -
,
.
. . 2
« » 141 .
(9)–(14) -
141 . -
. 2, , Hc – -
, [2].
, . 3
3- ( 2 )
. 330
. 2
ISSN 1607-7970. . . 2012. 1 7
),
(0,5 ) (10 ).
. . 2, -
330 ,
10% -
. -
330 ( . 2, ) 10 ,
10%, -
. -
.
( . 3). -
. ,
(38 ),
. (2 ) 3,75
0,5 ( ) 110 .
330 ,
(0,5 ) , . 3
110 .
( ),
, .
, , ,
, .
, V
Q
V
zyx dVQB~QB~QB~F 222p , (18)
Np,...,p1p – .
, ( ) -
: p1 I – , ; p2 d –
. 3
8 ISSN 1607-7970. . . 2012. 1
. , (18)
.
,
, p3 S –
, -
(18) , -
[5].
,
, -
, , -
.
. 1. -
50 , -
.
2.
330 ,
( 10%)
.
.
3. , 330 -
2 3,75 (0,5 )
110 , -
, , -
.
1. ., . . – .: , 1967. – .2. – 408 .
2. . . – .: , 1947. – 539 .
3. :
2.1.2.2645-10:
64 10.06.2010: 15.08.2010. – ., 2010.
4. : 20.179:2008. –
. – .: « ,
« »: ,
2008. – 34 .
5. Dezelak K., Stumberger G., Jak F. Arrangements of Overhead Power Line Conductors // Electric Power
Systems Research. – 2011. – Vol. 81. – 12. – . 2164 2170.
6. Conti R., Giorgi A., Rendina R., Sartore L., Sena E.A. Technical Solutions To Reduce 50 Hz Magnetic
Fields from Power Lines // Proceedings of Power Tech. Conference IEEE’2003, 23-26 June, 2003. – Bologna (Italy). –
2003. – Vol.2. – 6 p.
7. Feychting M., Floderus B. and Ahlbom A. Parental occupational exposure to magnetic fields and childhood
cancer // Cancer Causes and Control. – 2000. – Vol. 11. – . 151 156.
8. Focke F., Schuermann D., Kuster N., Schär P. DNA fragmentation in human fibroblasts under extremely
low frequency electromagnetic field exposure // Mutation Research. – 2009. – Vol. 683. – 1 2. – P . 74 83.
9. The Swedish National standard. MPRII 1990:08. – Swedish Board for Technical Accreditation, 1990.
621.3.013
. , .- . , . , ,
. , , . ,
,
. , 19, , 61106, .
ISSN 1607-7970. . . 2012. 1 9
) 50 .
330 ,
( 10%) 10 . ,
(38 ) (2 )
3,7 , (0,5 ) 100 , -
, . . 9,
. 3.
: , , , ,
.
THE RESEARCH OF MAGNETIC FIELD OF HIGH-VOLTAGE AC TRANSMISSIONS LINES
V.Yu.Rozov, S.Yu.Reutskyi, D.Ye.Pelevin, V.N.Yak nk ,
Magnetism of Technical Objects Science and Technology Center of the NAS of Ukraine,
19 Industrialna st., PO Box 72, Khark v 61106, Ukraine.
The mathematical model of the 50 Hz three-phase overhead power transmission line and the engineering method of the
calculation of the root mean square value of the magnetic field density are developed on the base of Biot–Savart’s and
Laplace’s equations. The results of the experimental verification of the method developed are presented. They have
been carried out on three operating transmission lines with the voltage 330 kV. The data show that the method
developed provides the acceptable precision of the calculation with the relative error less than 10% at the distance of
more than 10 m from the line. It is shown that with the nominal current 2 the induction of the magnetic field is equal
to 3,7 on the border of the transmission line protection zone (38 m). It decreases to the safe level of 0,5 at the
distance of more than 100 m from the line. This raises the problem of the formation of the size of sanitary protection
zones taking into account not only electrical field but also the magnetic field. References 9, figures 3.
Keywords: transmission line, magnetic field, mathematical model, method of calculation, experimental researches.
1. Neiman L.R., Demirchian K.S. Theory of Electrical Engineering: In 2 vol. – Leningrad: Energiia,1967. –
Vol.2. – 408 p. (Rus)
2. Stretton J. Electromagnetic Theory. – Moskva: Gostekhizdat, 1947. – 539 p. (Rus)
3. The sanitary-epidemiology requirements for living conditions in living buildings and quarters: SunPiN
2.1.2.2645-10: Approved by Resolution of The state sanitary doctor of the Russian Federation 64, 10.06.2010:
Effective from 15.08.2010. – oskva, 2010. (Rus)
4. The calculation of the electric and magnetic fields of the electrical transmission lines: COU-
N 20.179:2008. – Official edition. – Kyiv: Derzhavne pidpryemstvo "Naukovo-doslidnyi, proektno-vyshukuvalnyi
ta konstruktorsko-tekhnologichnyi instytut "Ukrsilenergoproekt": Ministerstvo palyva ta enerhetyku Ukrainy, 2008. –
34 . (Ukr)
5. Dezelak K., Stumberger G., Jak F. Arrangements of Overhead Power Line Conductors // Electric Power
Systems Research. – 2011. – Vol. 81. – 12. – p. 2164 2170.
6. Conti R., Giorgi A., Rendina R., Sartore L., Sena E.A. Technical Solutions To Reduce 50 Hz Magnetic
Fields from Power Lines // Proceedings of Power Tech Conference IEEE’2003, 23 26 June, 2003. – Bologna (Italy). –
2003. – Vol .2. – 6 p.
7. Feychting M., Floderus B. and Ahlbom A. Parental occupational exposure to magnetic fields and childhood
cancer // Cancer Causes and Control. – 2000. – Vol. 11. – . 151 156.
8. Focke F., Schuermann D., Kuster N., Schär P. DNA fragmentation in human fibroblasts under extremely
low frequency electromagnetic field exposure // Mutation Research. – 2009. – Vol. 683. – 1 2. – Pp. 74 83.
9. The Swedish National standard. MPRII 1990:08. – Swedish Board for Technical Accreditation, 1990.
23.11.2011
Received 23.11.2011
|