Исследование магнитного поля высоковольтных линий электропередачи переменного тока

The mathematical model of the 50 Hz three-phase overhead power transmission line and the engineering method of the calculation of the root mean square value of the magnetic field density are developed on the base of Biot–Savart’s and Laplace’s equations. The results of the experimental verification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Розов, В.Ю., Реуцкий, С.Ю., Пелевин, Д.Е., Яковенко, В.М.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут електродинаміки НАН України 2012
Schriftenreihe:Технічна електродинаміка
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/62051
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Исследование магнитного поля высоковольтных линий электропередачи переменного тока / В.Ю. Розов, С.Ю. Реуцкий, Д.Е. Пелевин, В.М. Яковенко // Технічна електродинаміка. — 2012. — № 1. — С. 3-9. — Бібліогр.: 9 назв. — pос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-62051
record_format dspace
spelling irk-123456789-620512014-05-17T03:00:50Z Исследование магнитного поля высоковольтных линий электропередачи переменного тока Розов, В.Ю. Реуцкий, С.Ю. Пелевин, Д.Е. Яковенко, В.М. Теоретична електротехніка та електрофізика The mathematical model of the 50 Hz three-phase overhead power transmission line and the engineering method of the calculation of the root mean square value of the magnetic field density are developed on the base of Biot–Savart’s and Laplace’s equations. The results of the experimental verification of the method developed are presented. They have been carried out on three operating transmission lines with the voltage 330 kV. The data show that the method developed provides the acceptable precision of the calculation with the relative error less than 10% at the distance of more than 10 m from the line. It is shown that with the nominal current 2 kA the induction of the magnetic field is equal to 3,7 μT on the border of the transmission line protection zone (38 m). It decreases to the safe level of 0,5 μT at the distance of more than 100 m from the line. This raises the problem of the formation of the size of sanitary protection zones taking into account not only electrical field but also the magnetic field. 2012 Article Исследование магнитного поля высоковольтных линий электропередачи переменного тока / В.Ю. Розов, С.Ю. Реуцкий, Д.Е. Пелевин, В.М. Яковенко // Технічна електродинаміка. — 2012. — № 1. — С. 3-9. — Бібліогр.: 9 назв. — pос. 0204-3599 http://dspace.nbuv.gov.ua/handle/123456789/62051 621.3.013 ru Технічна електродинаміка Інститут електродинаміки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Теоретична електротехніка та електрофізика
Теоретична електротехніка та електрофізика
spellingShingle Теоретична електротехніка та електрофізика
Теоретична електротехніка та електрофізика
Розов, В.Ю.
Реуцкий, С.Ю.
Пелевин, Д.Е.
Яковенко, В.М.
Исследование магнитного поля высоковольтных линий электропередачи переменного тока
Технічна електродинаміка
description The mathematical model of the 50 Hz three-phase overhead power transmission line and the engineering method of the calculation of the root mean square value of the magnetic field density are developed on the base of Biot–Savart’s and Laplace’s equations. The results of the experimental verification of the method developed are presented. They have been carried out on three operating transmission lines with the voltage 330 kV. The data show that the method developed provides the acceptable precision of the calculation with the relative error less than 10% at the distance of more than 10 m from the line. It is shown that with the nominal current 2 kA the induction of the magnetic field is equal to 3,7 μT on the border of the transmission line protection zone (38 m). It decreases to the safe level of 0,5 μT at the distance of more than 100 m from the line. This raises the problem of the formation of the size of sanitary protection zones taking into account not only electrical field but also the magnetic field.
format Article
author Розов, В.Ю.
Реуцкий, С.Ю.
Пелевин, Д.Е.
Яковенко, В.М.
author_facet Розов, В.Ю.
Реуцкий, С.Ю.
Пелевин, Д.Е.
Яковенко, В.М.
author_sort Розов, В.Ю.
title Исследование магнитного поля высоковольтных линий электропередачи переменного тока
title_short Исследование магнитного поля высоковольтных линий электропередачи переменного тока
title_full Исследование магнитного поля высоковольтных линий электропередачи переменного тока
title_fullStr Исследование магнитного поля высоковольтных линий электропередачи переменного тока
title_full_unstemmed Исследование магнитного поля высоковольтных линий электропередачи переменного тока
title_sort исследование магнитного поля высоковольтных линий электропередачи переменного тока
publisher Інститут електродинаміки НАН України
publishDate 2012
topic_facet Теоретична електротехніка та електрофізика
url http://dspace.nbuv.gov.ua/handle/123456789/62051
citation_txt Исследование магнитного поля высоковольтных линий электропередачи переменного тока / В.Ю. Розов, С.Ю. Реуцкий, Д.Е. Пелевин, В.М. Яковенко // Технічна електродинаміка. — 2012. — № 1. — С. 3-9. — Бібліогр.: 9 назв. — pос.
series Технічна електродинаміка
work_keys_str_mv AT rozovvû issledovaniemagnitnogopolâvysokovolʹtnyhlinijélektroperedačiperemennogotoka
AT reuckijsû issledovaniemagnitnogopolâvysokovolʹtnyhlinijélektroperedačiperemennogotoka
AT pelevinde issledovaniemagnitnogopolâvysokovolʹtnyhlinijélektroperedačiperemennogotoka
AT âkovenkovm issledovaniemagnitnogopolâvysokovolʹtnyhlinijélektroperedačiperemennogotoka
first_indexed 2025-07-05T12:55:12Z
last_indexed 2025-07-05T12:55:12Z
_version_ 1836811669104230400
fulltext ISSN 1607-7970. . . 2012. 1 3 621.3.013 . , .- . , . , , . , , . , , . , 19, , 61106, . - ( ) 50 . 330 , - ( 10%) 10 . , (38 ) - (2 ) 3,7 (0,5 ) 100 , - , . . 9, . 3. : , , , , - . . 20- - , ( ), . C , , [7, 8]. - 50(60) , 0,25 . [9]. , , [3]. , ( ) 50 , 0,5 10 . , [4]. , , . , , . , – . . – . 50 , , . , dH(t), i(t), dl, [1,4] .d R titd RlH 34 (1) © ., ., ., ., 2012 4 ISSN 1607-7970. . . 2012. 1 R dl ti z,y,xP . , L, . R dtit,P L 30 4 RlH (2) , , . i , , , , , 2 4sin , sin , sin 3 3A m A B m B C m Ci t I t i t I t i t I t , (3) Im – . (3) P , , 3 4 3 2 tsinPtsinPtsinPP CBA HHHH , (4) 1 1 3, sin cos 2 2 2A B B CCP t P P P t P P tH H H H H H . (5) HA, HB, HC – P(x, y, z). , (5), - . , x tcosPHPHtsinPHPHPHt,PH x,Bx,Cx,Cx,Bx,Ax 2 3 2 1 2 1 . (6) Hx(P,t) T=2 / B= 0H, x,Cx,Bx,Cx,Ax,Bx,Ax,Cx,Bx,Ax BBBBBBBBBPB~ 222 2 1 . (7) PB~x PB~y , PB~z , , P x, y, z . , - (3)–(7) - ( ) . - ( ) , , , [2, 6], . (1), (2), (6), (7) , . , . . , [3]. , - . 1). . 2). , . 3). . 4). , 120 . . 5). ISSN 1607-7970. . . 2012. 1 5 yyxx y,xHy,xHy,xH ee , y – , x – , . . - , , , . [4] x, y. - Hz , , , - . i, - (x0, y0), [1] 0 0 , , 2m y yiU x y t arctg x x (8) , , 2 0 2 0 00 0 2 yyxx yyi x Ut,y,xB m x , (9) 2 0 2 0 00 0 2 yyxx xxi y Ut,y,xB m y . (10) (4) , (7), x,Cx,Bx,Cx,Ax,Bx,Ax,Cx,Bx,Ax BBBBBBBBBy,xB~ 222 2 1 , (11) y,Cy,By,Cy,Ay,By,Ay,Cy,By,Ay BBBBBBBBBy,xB~ 222 2 1 , (12) , (7), 22 0 2 AA AA,m x,A yyxx yyI y,xB , (13) 22 0 2 AA AA,m y,A yyxx xxI y,xB . (14) Im,A tsinIti A,mA ; (xA, yA) - , . - , (xA, yA) (xB, yB) (xC, yC) . - . 1. - , - , . n=1, …, N y,xB A n,x , y,xBB n,x , y,xBC n,x y,xBA n,y , y,xBB n,y , y,xBC n,y . , , , 1 1 1 , , , , , , , , , N N N A A B B C C x x n x x n x x n n n n B x y B x y B x y B x y B x y B x y (15) . 1 6 ISSN 1607-7970. . . 2012. 1 , , , 1 1 1 , , , , , , , , N N N A A B B C C y y n y y n y y n n n n B x y B x y B x y B x y B x y B x y . (16) (11), (12). 22 ,~,~,~ yxByxByxB yx . (17) , (9) (17). , , , . . : 1). 330 « - » 2 , ; 2). 330 « » 2 - , ; 3). 330 1,2» 2 . , - , . Magnetoscop 1.069 Foerster 2,5% 1 . - , . . . 2 « » 141 . (9)–(14) - 141 . - . 2, , Hc – - , [2]. , . 3 3- ( 2 ) . 330 . 2 ISSN 1607-7970. . . 2012. 1 7 ), (0,5 ) (10 ). . . 2, - 330 , 10% - . - 330 ( . 2, ) 10 , 10%, - . - . ( . 3). - . , (38 ), . (2 ) 3,75 0,5 ( ) 110 . 330 , (0,5 ) , . 3 110 . ( ), , . , , , , . , V Q V zyx dVQB~QB~QB~F 222p , (18) Np,...,p1p – . , ( ) - : p1 I – , ; p2 d – . 3 8 ISSN 1607-7970. . . 2012. 1 . , (18) . , , p3 S – , - (18) , - [5]. , , - , , - . . 1. - 50 , - . 2. 330 , ( 10%) . . 3. , 330 - 2 3,75 (0,5 ) 110 , - , , - . 1. ., . . – .: , 1967. – .2. – 408 . 2. . . – .: , 1947. – 539 . 3. : 2.1.2.2645-10: 64 10.06.2010: 15.08.2010. – ., 2010. 4. : 20.179:2008. – . – .: « , « »: , 2008. – 34 . 5. Dezelak K., Stumberger G., Jak F. Arrangements of Overhead Power Line Conductors // Electric Power Systems Research. – 2011. – Vol. 81. – 12. – . 2164 2170. 6. Conti R., Giorgi A., Rendina R., Sartore L., Sena E.A. Technical Solutions To Reduce 50 Hz Magnetic Fields from Power Lines // Proceedings of Power Tech. Conference IEEE’2003, 23-26 June, 2003. – Bologna (Italy). – 2003. – Vol.2. – 6 p. 7. Feychting M., Floderus B. and Ahlbom A. Parental occupational exposure to magnetic fields and childhood cancer // Cancer Causes and Control. – 2000. – Vol. 11. – . 151 156. 8. Focke F., Schuermann D., Kuster N., Schär P. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure // Mutation Research. – 2009. – Vol. 683. – 1 2. – P . 74 83. 9. The Swedish National standard. MPRII 1990:08. – Swedish Board for Technical Accreditation, 1990. 621.3.013 . , .- . , . , , . , , . , , . , 19, , 61106, . ISSN 1607-7970. . . 2012. 1 9 ) 50 . 330 , ( 10%) 10 . , (38 ) (2 ) 3,7 , (0,5 ) 100 , - , . . 9, . 3. : , , , , . THE RESEARCH OF MAGNETIC FIELD OF HIGH-VOLTAGE AC TRANSMISSIONS LINES V.Yu.Rozov, S.Yu.Reutskyi, D.Ye.Pelevin, V.N.Yak nk , Magnetism of Technical Objects Science and Technology Center of the NAS of Ukraine, 19 Industrialna st., PO Box 72, Khark v 61106, Ukraine. The mathematical model of the 50 Hz three-phase overhead power transmission line and the engineering method of the calculation of the root mean square value of the magnetic field density are developed on the base of Biot–Savart’s and Laplace’s equations. The results of the experimental verification of the method developed are presented. They have been carried out on three operating transmission lines with the voltage 330 kV. The data show that the method developed provides the acceptable precision of the calculation with the relative error less than 10% at the distance of more than 10 m from the line. It is shown that with the nominal current 2 the induction of the magnetic field is equal to 3,7 on the border of the transmission line protection zone (38 m). It decreases to the safe level of 0,5 at the distance of more than 100 m from the line. This raises the problem of the formation of the size of sanitary protection zones taking into account not only electrical field but also the magnetic field. References 9, figures 3. Keywords: transmission line, magnetic field, mathematical model, method of calculation, experimental researches. 1. Neiman L.R., Demirchian K.S. Theory of Electrical Engineering: In 2 vol. – Leningrad: Energiia,1967. – Vol.2. – 408 p. (Rus) 2. Stretton J. Electromagnetic Theory. – Moskva: Gostekhizdat, 1947. – 539 p. (Rus) 3. The sanitary-epidemiology requirements for living conditions in living buildings and quarters: SunPiN 2.1.2.2645-10: Approved by Resolution of The state sanitary doctor of the Russian Federation 64, 10.06.2010: Effective from 15.08.2010. – oskva, 2010. (Rus) 4. The calculation of the electric and magnetic fields of the electrical transmission lines: COU- N 20.179:2008. – Official edition. – Kyiv: Derzhavne pidpryemstvo "Naukovo-doslidnyi, proektno-vyshukuvalnyi ta konstruktorsko-tekhnologichnyi instytut "Ukrsilenergoproekt": Ministerstvo palyva ta enerhetyku Ukrainy, 2008. – 34 . (Ukr) 5. Dezelak K., Stumberger G., Jak F. Arrangements of Overhead Power Line Conductors // Electric Power Systems Research. – 2011. – Vol. 81. – 12. – p. 2164 2170. 6. Conti R., Giorgi A., Rendina R., Sartore L., Sena E.A. Technical Solutions To Reduce 50 Hz Magnetic Fields from Power Lines // Proceedings of Power Tech Conference IEEE’2003, 23 26 June, 2003. – Bologna (Italy). – 2003. – Vol .2. – 6 p. 7. Feychting M., Floderus B. and Ahlbom A. Parental occupational exposure to magnetic fields and childhood cancer // Cancer Causes and Control. – 2000. – Vol. 11. – . 151 156. 8. Focke F., Schuermann D., Kuster N., Schär P. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure // Mutation Research. – 2009. – Vol. 683. – 1 2. – Pp. 74 83. 9. The Swedish National standard. MPRII 1990:08. – Swedish Board for Technical Accreditation, 1990. 23.11.2011 Received 23.11.2011