Reparametrizations of vector fields and their shift maps
LetM be a smooth manifold, F be a smooth vector field on M, and (Ft) be the local flow of F. Denote by Sh(F) the subset of C^∞(M,M) consisting of maps h : M → M of the following form: h(x) = Fα(x)(x), where _ runs over all smooth functions M → R which can be substituted into F instead of t. This sp...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/6328 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Reparametrizations of vector fields and their shift maps / S. Maksymenko // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 489-498. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | LetM be a smooth manifold, F be a smooth vector field on M, and (Ft) be the local flow of F. Denote by Sh(F) the subset of C^∞(M,M) consisting of maps h : M → M of the following form:
h(x) = Fα(x)(x), where _ runs over all smooth functions M → R which can be substituted into F instead of t. This space often contains the identity component of the group of diffeomorphisms preserving orbits of F. In this note it is shown that Sh(F) is not changed under reparametrizations of F, that is for any smooth strictly positive function μ : M → (0,+∞) we have that Sh(F) = Sh(μF). As an application it is proved that F can be reparametrized to induce a circle action on M if and only if there exists a smooth function μ : M → (0,+∞) such that F(x, μ(x)) ≡ x. |
---|