On the efficient method of solving ill-posed problems by adaptive discretization

To solve ill-posed problems Ax = f is used the Fakeev-Lardy regularization, using an adaptive discretization strategy. It is shown that for some classes of finitely smoothing operators proposed algorithm achieves the optimal order of accuracy and is more economical in the sense of amount of discrete...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Solodky, S.G., Volynets, E.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/6332
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the efficient method of solving ill-posed problems by adaptive discretization / S.G. Solodky, E.A. Volynets // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 524-549. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-6332
record_format dspace
spelling irk-123456789-63322010-02-24T12:01:05Z On the efficient method of solving ill-posed problems by adaptive discretization Solodky, S.G. Volynets, E.A. Геометрія, топологія та їх застосування To solve ill-posed problems Ax = f is used the Fakeev-Lardy regularization, using an adaptive discretization strategy. It is shown that for some classes of finitely smoothing operators proposed algorithm achieves the optimal order of accuracy and is more economical in the sense of amount of discrete information then standard methods 2009 Article On the efficient method of solving ill-posed problems by adaptive discretization / S.G. Solodky, E.A. Volynets // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 524-549. — Бібліогр.: 11 назв. — англ. 1815-2910 http://dspace.nbuv.gov.ua/handle/123456789/6332 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Геометрія, топологія та їх застосування
Геометрія, топологія та їх застосування
spellingShingle Геометрія, топологія та їх застосування
Геометрія, топологія та їх застосування
Solodky, S.G.
Volynets, E.A.
On the efficient method of solving ill-posed problems by adaptive discretization
description To solve ill-posed problems Ax = f is used the Fakeev-Lardy regularization, using an adaptive discretization strategy. It is shown that for some classes of finitely smoothing operators proposed algorithm achieves the optimal order of accuracy and is more economical in the sense of amount of discrete information then standard methods
format Article
author Solodky, S.G.
Volynets, E.A.
author_facet Solodky, S.G.
Volynets, E.A.
author_sort Solodky, S.G.
title On the efficient method of solving ill-posed problems by adaptive discretization
title_short On the efficient method of solving ill-posed problems by adaptive discretization
title_full On the efficient method of solving ill-posed problems by adaptive discretization
title_fullStr On the efficient method of solving ill-posed problems by adaptive discretization
title_full_unstemmed On the efficient method of solving ill-posed problems by adaptive discretization
title_sort on the efficient method of solving ill-posed problems by adaptive discretization
publisher Інститут математики НАН України
publishDate 2009
topic_facet Геометрія, топологія та їх застосування
url http://dspace.nbuv.gov.ua/handle/123456789/6332
citation_txt On the efficient method of solving ill-posed problems by adaptive discretization / S.G. Solodky, E.A. Volynets // Збірник праць Інституту математики НАН України. — 2009. — Т. 6, № 2. — С. 524-549. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT solodkysg ontheefficientmethodofsolvingillposedproblemsbyadaptivediscretization
AT volynetsea ontheefficientmethodofsolvingillposedproblemsbyadaptivediscretization
first_indexed 2023-10-18T16:34:55Z
last_indexed 2023-10-18T16:34:55Z
_version_ 1796139361791639552