Аналитическое описание кривых деформирования материалов
На основе уравнения типа Аррениуса предложен логарифмический закон для кривых деформирования материалов при растяжении, сжатии, изгибе и кручении. Введено понятие логарифмической деформации Є = ln(ε). После перестройки в координатах с логарифмической деформацией по оси абсцисс кривые деформирования...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
2012
|
Назва видання: | Электронная микроскопия и прочность материалов |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/63538 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Аналитическое описание кривых деформирования материалов / Д.Г. Вербило // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2012. — Вип. 18. — С. 104-111. — Бібліогр.: 12 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-63538 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-635382014-06-04T03:01:26Z Аналитическое описание кривых деформирования материалов Вербило, Д.Г. На основе уравнения типа Аррениуса предложен логарифмический закон для кривых деформирования материалов при растяжении, сжатии, изгибе и кручении. Введено понятие логарифмической деформации Є = ln(ε). После перестройки в координатах с логарифмической деформацией по оси абсцисс кривые деформирования становятся прямолинейными с тангенсом угла наклона, равным логарифмическому коэффициенту деформационного упрочнения. Также предложен закон, содержащий arch, который лучше описывает начальные стадии кривых деформирования. Аппроксимирована серия кривых деформиро-вания материалов с использованием программ Excel и Origin, что показало пригодность предложенных законов для применения. На підставі рівняння типу Арреніуса запропонований логарифмічний закон для кривих деформування матеріалів при розтязі, стиску, згині та крученні. Введено поняття логарифмічної деформації Є = ln (ε). Після перебудови в координатах з логарифмічною деформацією по осі абсцис криві деформування стають прямолінійними з тангенсом кута нахилу, рівним логарифмічному коефіцієнту деформаційного зміцнення. Також запропоновано закон, що містить arch, який краще описує початкові стадії кривих деформування. Апроксимовано серію кривих деформування матеріалів з використанням програм Excel і Origin, що показало придатність запропонованих законів для застосування. Based on an Arrhenius-type equation proposed by the logarithmic law for the curves of deformation of materials under tension, compression, bending and torsion. The notion of logarithmic strain Є = ln (ε). After adjustment in the coordinates with a logarithmic strain along the horizontal axis, the deformation curves are rectilinear with a slope equal to the logarithmic strain hardening coefficient. It also proposed a law that contains the arch, which bette r describes the initial stages of deformation curves. Approximated by a series of curves of deformation of materials with the use of Excel and Origin, which has shown the suitability of the proposed laws for use. 2012 Article Аналитическое описание кривых деформирования материалов / Д.Г. Вербило // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2012. — Вип. 18. — С. 104-111. — Бібліогр.: 12 назв. — рос. XXXX-0048 http://dspace.nbuv.gov.ua/handle/123456789/63538 539.385:620.175.21 ru Электронная микроскопия и прочность материалов Інститут проблем матеріалознавства ім. І.М. Францевича НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
description |
На основе уравнения типа Аррениуса предложен логарифмический закон для кривых деформирования материалов при растяжении, сжатии, изгибе и кручении. Введено понятие логарифмической деформации Є = ln(ε). После перестройки в координатах с логарифмической деформацией по оси абсцисс кривые деформирования становятся прямолинейными с тангенсом угла наклона, равным логарифмическому коэффициенту деформационного упрочнения. Также предложен закон, содержащий arch, который лучше описывает начальные стадии кривых деформирования. Аппроксимирована серия кривых деформиро-вания материалов с использованием программ Excel и Origin, что показало пригодность предложенных законов для применения. |
format |
Article |
author |
Вербило, Д.Г. |
spellingShingle |
Вербило, Д.Г. Аналитическое описание кривых деформирования материалов Электронная микроскопия и прочность материалов |
author_facet |
Вербило, Д.Г. |
author_sort |
Вербило, Д.Г. |
title |
Аналитическое описание кривых деформирования материалов |
title_short |
Аналитическое описание кривых деформирования материалов |
title_full |
Аналитическое описание кривых деформирования материалов |
title_fullStr |
Аналитическое описание кривых деформирования материалов |
title_full_unstemmed |
Аналитическое описание кривых деформирования материалов |
title_sort |
аналитическое описание кривых деформирования материалов |
publisher |
Інститут проблем матеріалознавства ім. І.М. Францевича НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/63538 |
citation_txt |
Аналитическое описание кривых деформирования материалов / Д.Г. Вербило // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2012. — Вип. 18. — С. 104-111. — Бібліогр.: 12 назв. — рос. |
series |
Электронная микроскопия и прочность материалов |
work_keys_str_mv |
AT verbilodg analitičeskoeopisaniekrivyhdeformirovaniâmaterialov |
first_indexed |
2023-10-18T18:43:40Z |
last_indexed |
2023-10-18T18:43:40Z |
_version_ |
1796144995228450816 |