2025-02-23T00:40:51-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-70439%22&qt=morelikethis&rows=5
2025-02-23T00:40:51-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-70439%22&qt=morelikethis&rows=5
2025-02-23T00:40:51-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:40:51-05:00 DEBUG: Deserialized SOLR response

Диффузия электромагнитных полей в неоднородных твердых телах

Для неоднородных в пространстве (с зависящими от координат ε, μ, σ) и во времени (ε = ε(t), μ = μ(t), σ = σ(t)) одномерных электромагнитных полей получены диффузионные и телеграфные уравнения, ранее известные только для однородных сред. Выведены уравнения полей для случаев нелинейности и слабой нело...

Full description

Saved in:
Bibliographic Details
Main Author: Венгеров, И.Р.
Format: Article
Language:Russian
Published: Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України 2008
Series:Физика и техника высоких давлений
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/70439
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-70439
record_format dspace
spelling irk-123456789-704392014-11-07T03:01:48Z Диффузия электромагнитных полей в неоднородных твердых телах Венгеров, И.Р. Для неоднородных в пространстве (с зависящими от координат ε, μ, σ) и во времени (ε = ε(t), μ = μ(t), σ = σ(t)) одномерных электромагнитных полей получены диффузионные и телеграфные уравнения, ранее известные только для однородных сред. Выведены уравнения полей для случаев нелинейности и слабой нелокальности (квазилокальности) систем. Diffusion and telegraph equations known till now solely for homogeneous media have been derived for space- (ε-, μ-, σ-dependent) and time- (ε = ε(t), μ = μ(t), σ = σ(t)) nonuniform one-dimensional electromagnetic fields. Field equations have been also obtained for nonlinear systems and those of low nonlocality 2008 Article Диффузия электромагнитных полей в неоднородных твердых телах / И.Р. Венгеров // Физика и техника высоких давлений. — 2008. — Т. 18, № 2. — С. 62-66. — Бібліогр.: 7 назв. — рос. 0868-5924 PACS: 41.20.Jb http://dspace.nbuv.gov.ua/handle/123456789/70439 ru Физика и техника высоких давлений Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
description Для неоднородных в пространстве (с зависящими от координат ε, μ, σ) и во времени (ε = ε(t), μ = μ(t), σ = σ(t)) одномерных электромагнитных полей получены диффузионные и телеграфные уравнения, ранее известные только для однородных сред. Выведены уравнения полей для случаев нелинейности и слабой нелокальности (квазилокальности) систем.
format Article
author Венгеров, И.Р.
spellingShingle Венгеров, И.Р.
Диффузия электромагнитных полей в неоднородных твердых телах
Физика и техника высоких давлений
author_facet Венгеров, И.Р.
author_sort Венгеров, И.Р.
title Диффузия электромагнитных полей в неоднородных твердых телах
title_short Диффузия электромагнитных полей в неоднородных твердых телах
title_full Диффузия электромагнитных полей в неоднородных твердых телах
title_fullStr Диффузия электромагнитных полей в неоднородных твердых телах
title_full_unstemmed Диффузия электромагнитных полей в неоднородных твердых телах
title_sort диффузия электромагнитных полей в неоднородных твердых телах
publisher Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/70439
citation_txt Диффузия электромагнитных полей в неоднородных твердых телах / И.Р. Венгеров // Физика и техника высоких давлений. — 2008. — Т. 18, № 2. — С. 62-66. — Бібліогр.: 7 назв. — рос.
series Физика и техника высоких давлений
work_keys_str_mv AT vengerovir diffuziâélektromagnitnyhpolejvneodnorodnyhtverdyhtelah
first_indexed 2023-10-18T18:58:34Z
last_indexed 2023-10-18T18:58:34Z
_version_ 1796145668293656576