New 2D integrable families with a quartic second invariant

The method introduced by the present author in 1986 still proves most effective in constructing integrable 2-D Lagrangian systems, which admit in addition to the energy another integral of motion that is polynomial in velocities. In a previous article (J. Phys. A: Math. Gen., 39, 5807– 5824, 2006) w...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Інститут прикладної математики і механіки НАН України
Дата:2011
Автор: Yehia, H.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Механика твердого тела
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/71597
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Цитувати:New 2D integrable families with a quartic second invariant / H.M. Yehia // Механика твердого тела: Межвед. сб. науч. тр. — 2011. — Вип 41. — С. 233-243. — Бібліогр.: 20 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The method introduced by the present author in 1986 still proves most effective in constructing integrable 2-D Lagrangian systems, which admit in addition to the energy another integral of motion that is polynomial in velocities. In a previous article (J. Phys. A: Math. Gen., 39, 5807– 5824, 2006) we constructed a system, which admits a quartic complementary integral. This system, called by us “master”, is the largest known, as it involves 21 parameters, and contains, as special cases of it, almost all previously known systems of the same type that admit a quartic integral. In the present note we generalize the method we used before to construct new severalparameter systems that are not special cases of the master system. A new system involving 16 parameters is introduced and a special case of it admits interpretation in a problem of rigid body dynamics. It gives a unification of certain special versions of known classical integrable cases due to Kovalevskaya, Chaplygin and Goriatchev and other cases recently introduced by the present author.