Studying the stability of equilibrium solutions in the planar circular restricted four-body problem

The Newtonian circular restricted four-body problem is considered.We have obtained nonlinear algebraic equations, determining equilibrium solutions in the rotating frame, and found six possible equilibrium configurations of the system. Studying the stability of equilibrium solutions, we have proved...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Grebenikov, E.A., Gadomski, L., Prokopenya, A.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/7243
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Studying the stability of equilibrium solutions in the planar circular restricted four-body problem / E.A. Grebenikov, L. Gadomski, A.N. Prokopenya // Нелінійні коливання. — 2007. — Т. 10, № 1. — С. 66-82. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-7243
record_format dspace
spelling irk-123456789-72432010-03-29T12:01:16Z Studying the stability of equilibrium solutions in the planar circular restricted four-body problem Grebenikov, E.A. Gadomski, L. Prokopenya, A.N. The Newtonian circular restricted four-body problem is considered.We have obtained nonlinear algebraic equations, determining equilibrium solutions in the rotating frame, and found six possible equilibrium configurations of the system. Studying the stability of equilibrium solutions, we have proved that the radial equilibrium solutions are unstable while the bisector equilibrium solutions are stable in Liapunov’s sense if the mass parameter μ belongs (0, μ0), where μ0 is 0 a sufficiently small number, and μ ≠ μj , j = 1, 2, 3. We have also proved that for μ = μ1 and μ = μ3 the resonance conditions of the third and the fourth orders, respectively, are fulfilled and for these values of μ the bisector equilibrium are unstable and stable in Liapunov’s sense, respectively. All symbolic and numerical calculations are done with the computer algebra system Mathematica. Розглядається кругова зрiзана проблема ньютонiвської динамiки для чотирьох тiл. Отримано нелiнiйнi алгебраїчнi рiвняння, що визначають рiвноважнi розв’язки вiдносно обертаючої системи вiдлiку, та знайдено шiсть рiвноважних конфiгурацiй системи. При вивченнi стiйкостi рiвноважних розв’язкiв доведено, що радiальнi рiвноважнi розв’язки є нестiйкими, проте бiсекторнi рiвноважнi розв’язки є стiйкими за Ляпуновим, якщо параметр маси μ належить (0, μ0), де μ0 - досить мале число, і μ ≠ μj , j = 1, 2, 3. Також доведено, що для μ = μ1 та μ = μ3 умови резонансу вiдповiдно третього та четвертого порядкiв виконано, iдля цих значень µ бiсекторнi рiвноважнi розв’язки є вiдповiдно нестiйкими та стiйкими за Ляпуновим. Усi символьнi та числовi обчислення виконано за допомогою системи комп’ютерної алгебри "Математика". 2007 Article Studying the stability of equilibrium solutions in the planar circular restricted four-body problem / E.A. Grebenikov, L. Gadomski, A.N. Prokopenya // Нелінійні коливання. — 2007. — Т. 10, № 1. — С. 66-82. — Бібліогр.: 17 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/7243 517.9 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Newtonian circular restricted four-body problem is considered.We have obtained nonlinear algebraic equations, determining equilibrium solutions in the rotating frame, and found six possible equilibrium configurations of the system. Studying the stability of equilibrium solutions, we have proved that the radial equilibrium solutions are unstable while the bisector equilibrium solutions are stable in Liapunov’s sense if the mass parameter μ belongs (0, μ0), where μ0 is 0 a sufficiently small number, and μ ≠ μj , j = 1, 2, 3. We have also proved that for μ = μ1 and μ = μ3 the resonance conditions of the third and the fourth orders, respectively, are fulfilled and for these values of μ the bisector equilibrium are unstable and stable in Liapunov’s sense, respectively. All symbolic and numerical calculations are done with the computer algebra system Mathematica.
format Article
author Grebenikov, E.A.
Gadomski, L.
Prokopenya, A.N.
spellingShingle Grebenikov, E.A.
Gadomski, L.
Prokopenya, A.N.
Studying the stability of equilibrium solutions in the planar circular restricted four-body problem
author_facet Grebenikov, E.A.
Gadomski, L.
Prokopenya, A.N.
author_sort Grebenikov, E.A.
title Studying the stability of equilibrium solutions in the planar circular restricted four-body problem
title_short Studying the stability of equilibrium solutions in the planar circular restricted four-body problem
title_full Studying the stability of equilibrium solutions in the planar circular restricted four-body problem
title_fullStr Studying the stability of equilibrium solutions in the planar circular restricted four-body problem
title_full_unstemmed Studying the stability of equilibrium solutions in the planar circular restricted four-body problem
title_sort studying the stability of equilibrium solutions in the planar circular restricted four-body problem
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/7243
citation_txt Studying the stability of equilibrium solutions in the planar circular restricted four-body problem / E.A. Grebenikov, L. Gadomski, A.N. Prokopenya // Нелінійні коливання. — 2007. — Т. 10, № 1. — С. 66-82. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT grebenikovea studyingthestabilityofequilibriumsolutionsintheplanarcircularrestrictedfourbodyproblem
AT gadomskil studyingthestabilityofequilibriumsolutionsintheplanarcircularrestrictedfourbodyproblem
AT prokopenyaan studyingthestabilityofequilibriumsolutionsintheplanarcircularrestrictedfourbodyproblem
first_indexed 2023-10-18T16:37:03Z
last_indexed 2023-10-18T16:37:03Z
_version_ 1796139450433011712