Асимптотические свойства траекторий нелинейной системы в случае резонанса четвертого порядка

Изучено поведение решений нелинейной системы при t → +∞ в критическом случае при условии, что асимптотическая устойчивость обеспечивается членами не выше третьего порядка. Предпологается, что система имеет частоты, удовлетворяющие резонансному соотношению типа 1:1:2 либо 1:1:1:1, при этом другие рез...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Грушковская, В.В., Зуев, А.Л.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Механика твердого тела
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/72645
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Асимптотические свойства траекторий нелинейной системы в случае резонанса четвертого порядка / В.В. Грушковская, А.Л. Зуев // Механика твердого тела: Межвед. сб. науч. тр. — 2013. — Вип 43. — С. 109-123. — Бібліогр.: 13 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Изучено поведение решений нелинейной системы при t → +∞ в критическом случае при условии, что асимптотическая устойчивость обеспечивается членами не выше третьего порядка. Предпологается, что система имеет частоты, удовлетворяющие резонансному соотношению типа 1:1:2 либо 1:1:1:1, при этом другие резонансы вплоть до четвертого порядка отсутствуют. В случае существования знакоопределенного первого интеграла резонансной подсистемы предложены достаточные условия асимптотической устойчивости и построена функция Ляпунова. Основным результатом является степенная оценка нормы решений исходной системы с начальными условиями из некоторой окрестности нуля. В качестве иллюстрации рассмотрен пример механической системы с четырьмя степенями свободы.