Мультиагентная адаптация гибридного генетического алгоритма для обучения нейросетей
Предложен агентно-ориентированный подход адаптации формирования структуры и обучения нейросети к обучающей выборке. Для адаптации структур нейронных сетей используется генетический алгоритм с вещественным кодированием хромосом. Обучение нейросетей выполняется гибридным генетическим алгоритмом с г...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут проблем штучного інтелекту МОН України та НАН України
2008
|
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/7550 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Мультиагентная адаптация гибридного генетического алгоритма для обучения нейросетей / Д.В. Олейник, В.И. Шинкаренко // Штучний інтелект. — 2008. — № 4. — С. 463-470. — Бібліогр.: 14 назв. — рос. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Предложен агентно-ориентированный подход адаптации формирования структуры и обучения нейросети к
обучающей выборке. Для адаптации структур нейронных сетей используется генетический алгоритм с
вещественным кодированием хромосом. Обучение нейросетей выполняется гибридным генетическим
алгоритмом с градиентным дообучением лидера. Для подбора параметров обучения используются
интеллектуальные агенты, система знаний которых построена по принципу «начальник – подчиненный».
Построение знаний осуществляется методом кластеризации. Организация вычислительного процесса
позволяет выполнять распределённые вычисления в гетерогенных локальных сетях. |
---|