Asymptotic Analysis of a Parabolic Problem in a Thick Two-Level Junction

We consider an initial boundary value problem for the heat equation in a plane two-level junction Ωε; which is the union of a domain and a large number 2N of thin rods with the variable thickness of order ε = O(N^-1). The thin rods are divided into two levels depending on boundary conditions given o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Durante, T., Mel'nyk, T.A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/7611
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotic analysis of a parabolic problem in a thick two-level junction / T. Durante, T.A. Mel'nyk // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 3. — С. 313-341. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider an initial boundary value problem for the heat equation in a plane two-level junction Ωε; which is the union of a domain and a large number 2N of thin rods with the variable thickness of order ε = O(N^-1). The thin rods are divided into two levels depending on boundary conditions given on their sides. In addition, the boundary conditions depend on the parameters α ≥ 1 and β ≥ 1, and the thin rods from each level are ε-periodically alternated. The asymptotic analysis of this problem for different values of α and β is made as ε → 0. The leading terms of the asymptotic expansion for the solution are constructed, the asymptotic estimate in the Sobolev space L² (0; T; H¹(Ωε)) is obtained and the convergence theorem is proved with minimal conditions for the right-hand sides.