Homogenization of a Linear Nonstationary Navier—Stokes Equations System with a Time-Variant Domain with a Fine-Grained Boundary

The problem of distortion of viscous incompressible uid with a great number of solid particles with given velocities is considered. The diameters of particles and the distance between them tend to zero, and the number of particles tends to infinity. The asymptotic behavior of the solutions of the l...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Radyakin, N.K.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/7612
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Homogenization of a linear nonstationary Navier - Stokes equations system with a time-variant domain with a fine-grained boundary / N.K. Radyakin // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 3. — С. 342-364. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The problem of distortion of viscous incompressible uid with a great number of solid particles with given velocities is considered. The diameters of particles and the distance between them tend to zero, and the number of particles tends to infinity. The asymptotic behavior of the solutions of the linear system of Navier-Stokes equations is considered. In a homogenized model there appears an additional term containing the strength tensor of a single particle.