Деформативные свойства зернисто-волокнистых композитов при микроповреждаемости матрицы
Модель кратковременной микроповреждаемости обобщена на случай трехкомпонентного композитного материала, представляющего собой матрицу, стохастически армированную однонаправленными бесконечными волокнами и сфероидальными включениями. Предположено, что матрица является изотропной, а волокна и сфероида...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
2008
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/7704 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Деформативные свойства зернисто-волокнистых композитов при микроповреждаемости матрицы / Л.В. Назаренко // Приклад. пробл. механіки і математики. — 2008. — Вип. 6. — С. 146-153. — Бібліогр.: 13 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Модель кратковременной микроповреждаемости обобщена на случай трехкомпонентного композитного материала, представляющего собой матрицу, стохастически армированную однонаправленными бесконечными волокнами и сфероидальными включениями. Предположено, что матрица является изотропной, а волокна и сфероидальные включения имеют различные упругие свойства, которые обладают трансверсально-изотропной симметрией. Также полагается, что под воздействием макродеформаций в матрице происходит накопление микроповреждений. Микроповреждения моделируются пустыми порами. Критерий разрушения в микрообъеме принимается в форме Губера - Мизеса, где предел прочности является случайной функцией координат со степенным распределением или распределением Вейбулла. Напряженно-деформированное состояние и эффективные свойства материала с микроповреждениями в компонентах определяются на основании стохастических уравнений упругости для материалов на основе изотропной матрицы и трансверсально-изотропных сфероидов. Замыкание уравнений деформирования и повреждаемости осуществляется на основании уравнения баланса поврежденности (пористости) компонентов. Построены нелинейные зависимости совместных процессов деформирования и повреждаемости матрицы от макродеформаций для трехкомпонентного композита с трансверсально-изотропными включениями. |
---|