Beam parameters of an S-band electron linac with beam energy of 30…100 MeV

An S-band electron linac has been erected at the NSC KIPT to cover an energy range from 30 to about of 100 MeV. The linac consists of a couple of four-meter long piecewise homogeneous accelerating sections. Each section is supplied with RF power from a separate klystron KIU-12AM. The feature of th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Dovbnya, A.N., Aizatsky, M.I., Boriskin, V.N., Kushnir, V.A., Mytrochenko, V.V., Opanasenko, A.N., Perezhogin, S.A., Reprintsev, L.V., Savchenko, A.N., Stepin, D.L., Tatanov, V.I., Zhiglo, V.F.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2006
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/78514
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Beam parameters of an S-band electron linac with beam energy of 30…100 MeV / A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, A.N. Opanasenko, S.A. Perezhogin, L.V. Reprintsev, A.N. Savchenko, D.L. Stepin, V.I. Tatanov, V.F. Zhiglo // Вопросы атомной науки и техники. — 2006. — № 2. — С. 11-13. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-78514
record_format dspace
spelling irk-123456789-785142015-03-19T03:01:55Z Beam parameters of an S-band electron linac with beam energy of 30…100 MeV Dovbnya, A.N. Aizatsky, M.I. Boriskin, V.N. Kushnir, V.A. Mytrochenko, V.V. Opanasenko, A.N. Perezhogin, S.A. Reprintsev, L.V. Savchenko, A.N. Stepin, D.L. Tatanov, V.I. Zhiglo, V.F. Линейные ускорители заряженных частиц An S-band electron linac has been erected at the NSC KIPT to cover an energy range from 30 to about of 100 MeV. The linac consists of a couple of four-meter long piecewise homogeneous accelerating sections. Each section is supplied with RF power from a separate klystron KIU-12AM. The feature of the linac is in the use of an injector based on evanescent oscillations. Results of beam parameters’ measurement of at the linac exit are presented. В ННЦ ХФТИ создан линейный ускоритель электронов 10-см диапазона на энергию 30…100 MэВ. Уско- ритель состоит из двух кусочно-однородных четырехметровых ускоряющих секций. СВЧ-питание каждой секции осуществляется от клистрона КИУ-12AM. Особенностью линейного ускорителя является использо- вание инжектора, основанного на нераспространяющихся колебаниях. Приведены результаты измерения па- раметров пучка на выходе ускорителя. Наведені результати вимірювання параметрів пучка на виході створеного в ННЦ ХФТІ прискорювача електронів. Прискорювач складається з двох кусково-однорідних чотирьохметрових прискорювальних секцій. Живлення кожної секції здійснюється від клістрона КІУ-12АМ. Особливістю прискорювача є застосування інжектора, заснованого на коливаннях, що не розповсюджуються. 2006 Article Beam parameters of an S-band electron linac with beam energy of 30…100 MeV / A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, A.N. Opanasenko, S.A. Perezhogin, L.V. Reprintsev, A.N. Savchenko, D.L. Stepin, V.I. Tatanov, V.F. Zhiglo // Вопросы атомной науки и техники. — 2006. — № 2. — С. 11-13. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 41.75.Ht, 25.20.-x http://dspace.nbuv.gov.ua/handle/123456789/78514 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
spellingShingle Линейные ускорители заряженных частиц
Линейные ускорители заряженных частиц
Dovbnya, A.N.
Aizatsky, M.I.
Boriskin, V.N.
Kushnir, V.A.
Mytrochenko, V.V.
Opanasenko, A.N.
Perezhogin, S.A.
Reprintsev, L.V.
Savchenko, A.N.
Stepin, D.L.
Tatanov, V.I.
Zhiglo, V.F.
Beam parameters of an S-band electron linac with beam energy of 30…100 MeV
Вопросы атомной науки и техники
description An S-band electron linac has been erected at the NSC KIPT to cover an energy range from 30 to about of 100 MeV. The linac consists of a couple of four-meter long piecewise homogeneous accelerating sections. Each section is supplied with RF power from a separate klystron KIU-12AM. The feature of the linac is in the use of an injector based on evanescent oscillations. Results of beam parameters’ measurement of at the linac exit are presented.
format Article
author Dovbnya, A.N.
Aizatsky, M.I.
Boriskin, V.N.
Kushnir, V.A.
Mytrochenko, V.V.
Opanasenko, A.N.
Perezhogin, S.A.
Reprintsev, L.V.
Savchenko, A.N.
Stepin, D.L.
Tatanov, V.I.
Zhiglo, V.F.
author_facet Dovbnya, A.N.
Aizatsky, M.I.
Boriskin, V.N.
Kushnir, V.A.
Mytrochenko, V.V.
Opanasenko, A.N.
Perezhogin, S.A.
Reprintsev, L.V.
Savchenko, A.N.
Stepin, D.L.
Tatanov, V.I.
Zhiglo, V.F.
author_sort Dovbnya, A.N.
title Beam parameters of an S-band electron linac with beam energy of 30…100 MeV
title_short Beam parameters of an S-band electron linac with beam energy of 30…100 MeV
title_full Beam parameters of an S-band electron linac with beam energy of 30…100 MeV
title_fullStr Beam parameters of an S-band electron linac with beam energy of 30…100 MeV
title_full_unstemmed Beam parameters of an S-band electron linac with beam energy of 30…100 MeV
title_sort beam parameters of an s-band electron linac with beam energy of 30…100 mev
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2006
topic_facet Линейные ускорители заряженных частиц
url http://dspace.nbuv.gov.ua/handle/123456789/78514
citation_txt Beam parameters of an S-band electron linac with beam energy of 30…100 MeV / A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, A.N. Opanasenko, S.A. Perezhogin, L.V. Reprintsev, A.N. Savchenko, D.L. Stepin, V.I. Tatanov, V.F. Zhiglo // Вопросы атомной науки и техники. — 2006. — № 2. — С. 11-13. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dovbnyaan beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT aizatskymi beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT boriskinvn beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT kushnirva beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT mytrochenkovv beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT opanasenkoan beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT perezhoginsa beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT reprintsevlv beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT savchenkoan beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT stepindl beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT tatanovvi beamparametersofansbandelectronlinacwithbeamenergyof30100mev
AT zhiglovf beamparametersofansbandelectronlinacwithbeamenergyof30100mev
first_indexed 2025-07-06T02:35:16Z
last_indexed 2025-07-06T02:35:16Z
_version_ 1836863262878072832
fulltext BEAM PARAMETERS OF AN S-BAND ELECTRON LINAC WITH BEAM ENERGY OF 30…100 MeV A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, A.N. Opanasenko, S.A. Perezhogin, L.V. Reprintsev, A.N. Savchenko, D.L. Stepin, V.I. Tatanov, V.F. Zhiglo NSC KIPT, Kharkov, Ukraine E-mail: mitvic@kipt.kharkov.ua An S-band electron linac has been erected at the NSC KIPT to cover an energy range from 30 to about of 100 MeV. The linac consists of a couple of four-meter long piecewise homogeneous accelerating sections. Each sec- tion is supplied with RF power from a separate klystron KIU-12AM. The feature of the linac is in the use of an in- jector based on evanescent oscillations. Results of beam parameters’ measurement of at the linac exit are presented. PACS: 41.75.Ht, 25.20.-x 1. INTRODUCTION Studies into photonuclear reactions on light nuclei require information on a photon flux with fixed value of maximum energy. This photon flux can be obtained by an electron linac. The research linac that will be used for the above-mentioned purpose has been designed and constructed at the NSC KIPT. The linac can be used also for investigations into numerous physical phenomena connected with interaction of relativistic electron beams with electrodynamic systems and condensed media. De- scription of the linac is given in Ref. [1]. The linac con- sists of an injector, two piece-wise homogeneous accel- erating sections and beam transport system. The injector consists of a 25 keV diode electron gun and buncher on a basis of a resonance system with evanescent oscilla- tions [2]. The linac is now commissioning and the first results of beam measurements have been obtained. Sim- ulation results of self-consistent particle dynamics in the linac obtained by using the PARMELA code [3] and technique [4] are compared with the experimental re- sults. 2. SIMULATIONS The chain of five coupled E010 cavities is used as a resonant system of the injector. The cavities are coupled through the central apertures for beam passing. For real- ization of the required on-axis field distribution, the in- jector operating frequency close to the eigenfrequency of the last cavity was chosen higher than frequency of the «π»-mode of a homogeneous part of the resonance system (from the second to fourth cavities). For such sit- uation the phase advance of the field per cell remains equal π, while field amplitude drops rapidly from the fifth cell to the first one. The dispenser oxide cathode with a radius of 2.5 mm and curvature radius of 7.5 mm is used in the electron gun of the injector. The optical system of the gun was designed with the EGUN code [5]. The final choice of electrode shapes was made taking into account the beam dynamics in the injector because the calculations showed that both the beam size in a waist and the waist position influence the bunching due to the space charge forces. Simulation of particle dynamics in the injector was performed with the PARMELA code. To study the self- consistent task, the technique [4] was used. Example of simulation results for a case, when duration of current pulse was longer than that of the RF pulse is shown in Fig.1. Fig.1. On-axis field (1) and output current (2) (on the left), pulses of incident and reflected powers in the RF feeder of the injector (on the right) The choice of a linac structure has been made by us- ing simulation results of self-consistent transient dy- namics of particles in traveling wave accelerating sec- tions obtained with method [6]. Taking into account simulation results and available resources, we stopped our choice on a linac structure that includes two four- meter long «Kharkov-85» sections [7]. The sections are piece-wise homogeneous disc loaded waveguides con- sisting of four pieces with a constant impedance. Each piece matches with subsequent one through five transi- tional cells. Total cell number per section is 162, phase advance is 90° per cell, and operating frequency is 2797.15 MHz. Electrodynamic characteristics of these sections were calculated both by data interpolation [8] and using the method from Ref. [9]. Both methods gave the similar results. Calculated values of series impedance of the first, second, third and fourth pieces of the sections are equal to 1082, 1430, 1943 and 2930 Ohm/cm2, accordingly. The values for filling time and attenuation of the whole sections are 0.92 µs and 0.68 Neper, correspondently. Previously, these sections had been used as a part of the LUE-2000 linac [7]. Be- fore their usage in the designed linac, the electrodynam- ic characteristics of these sections were tested. Having obtained the refined data, numerical simulation of self- consistent beam dynamics was performed with tech- nique [4]. Between the injector and the first accelerating ___________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.11-13. 11 section an adjustable collimator is installed to cover a wide range of accelerated currents preserving conditions for bunching. Thus, a required output current of the linac was obtained in simulations by using beam colli- mations. Plots of mean particle energy W, energy spread ∆W/W and phase extent ∆ϕ of bunches versus time within a current pulse duration are shown in Fig.3. Ac- celerated current was 63 mA, RF power supply of the in- jector and each accelerating section were 1.2 MW and 16 MW, respectively. RF pulses were flat-toped. One can see the change of the mean energy by 3 MeV during the pulse due to the beam loading at the accelerated current. 3. EXPERIMENTAL STUDY OF BEAM CHARACTERISTICS The experimental study of the injector with a beam was carried out on the special stand that provides the RF power supply to the resonance system, high voltage and filament supplies to the electron gun as well as beam characteristics’ measurements. Measured dependence of a beam emittance ε, beam energy, and energy spread on feeding RF power is shown in Fig.2. Beam emittance was evaluated from a set of full width on a half of magnitude of beam trans- verse spot size obtained under quadrupole scan. Energy spread was determined by 90° bending magnet. The measured and expected parameters of the injector are presented in Table 1. Fig.2. Dependence of beam characteristics on feeding RF power Table 1. Specifications of the injector Parameter Measured Expected Gun high voltage, kV -25 -25 Cathode radius, mm 2.5 2.5 Beam waist, mm 1.4 2.2 Gun current, A 0.22 0.22 Operating frequency, MHz 2797.15 2797.15 Unloaded quality factor 11000 12298 Shunt impedance, MOhm/m 15 18.6 Coupling with the feeder 4.6 − Incident power, MW 1.2±0.1 0.75 Injector current, A 0.16 0.191 εn x,y, π⋅mm⋅mrad 10 15 ∆ϕ, ° (70% of particles) − 22 W, keV 900 850 ∆W/W, % (FWHM) 2.6 2.3 Measured beam parameters are consistent with sim- ulated ones. Discrepancy in measured and expected in- cident power is due to some uncertainty in power mea- surement, on the one hand, and some uncertainty of shunt impedance measured, on the other hand. For bead- pull measurements of the on-axis field pattern with large difference in field amplitude along the axis the bead should be large enough. It results in overestimation of the shunt impedance because of field integration over the bead. After the injector had been studied, it was joined with the accelerating sections (see Fig.3). Fig.3. The injector (top) joined wit the accelerating sec- tions (bottom) For diminishing the change, the HV pulse of the klystron feeding the second section was distorted to have some rise of output power to the end of RF pulse. The measured beam spectrum at the current is shown in Fig.5. One can clearly notice that time and value of tran- sitional process is diminished slightly. Fig.4. Simulated beam characteristics At the first test of the linac the beam transversal emittance was measured by the quadrupole scan method. Fig.6 shows the dependence of a horizontal beam profile width on a quadrupole current. Similar de- pendence was measured for the vertical profile. Data processing gave the values of normalized emittance that are listed in Table 2. There are other measured and cal- culated beam parameters at the exit of the linac enumer- ated in Table 2 for comparison. 10 Fig.5. Contour plot of measured energy spectrum Fig.6. Results of the quadrupole scan Table 2. Beam parameters at the linac exit Parameter Expected Measured Pulsed current, мА 63 30…120 W, MeV 95 50…00 ∆W/W, % (FWHM) 1.4 1.5 ∆ϕ , ° (70% of particles) 15 ∆x, ∆y at the target (FWHM), mm 0.1, 0.1 0.44, 0.68 εn x, y, π⋅mm⋅mrad 6, 6 63, 72 The measured values of the transversal beam emit- tance are much lower as compared to that of linacs with conventional injector type. Therewith, the comparison of the simulated results of particle dynamics with the first experimental data on beam characteristics shows reserve for the beam improvement. In particular, it con- cerns the transversal beam emittance. Ongoing research activities at the linac have an ultimate goal in develop- ment of a reliable scheme for computer control of beam energy as well as in equipment checkout and beam pa- rameters improvement. CONCLUSION Two-sectional electron linac with beam energy of 100 MeV and current of 120 mA has been developed and constructed at the NSC KIPT. Relatively low value of the transversal beam emittance allows obtaining high beam density on a target. We intend to conduct inten- sive researches of bunch forming to diminish the transversal emittance to the value predicted by calcula- tions. At the same time it is planned to carry out re- searches of photonuclear reactions on lights nuclei in the nearest future. REFERENSES 1. K.I. Antipov, M.I. Aizatsky, Yu.I. Akchurin et al. // Problems of Atomic Science and Technology. Se- ries: Nuclear Physics Investigations. 2004, №5, p.135. 2. M.I. Aizatsky, E.Z. Biller, N.G. Golovko et al. // Problems of Atomic Science and Technology. Se- ries: Nuclear Physics Investigations. 2004, №1(42), p.60. 3. L.M. Young, “PARMELA”. LA-UR-96-1835. Los Alamos, 1996. 4. A.N. Opanasenko, V.V. Mitrochenko. Simulation Technique for Study of Transient Self-consistent Beam Dynamics in RF Linacs. Proc. of EPAC 2004, Lucerne. 2004, p.2792. 5. W.B. Herrmannsfeldt. EGUN: Electron Optics Pro- gram. SLAC-PUB-6729. Stanford Linear Accelera- tor Center, 1994. 6. M.I. Aizatsky. Nonstationary Model for Beam Dy- namic Simulation in Multisectional Accelerators // Proc. of EPAC 98, Stockholm. 1998, p.1159. 7. E.Z. Biller, A.N. Dovbhya, V.A. Kushnir et al. // Part. Accel. 1990, №.27, p.119. 8. O.A. Valdner, N.P Sobenin, B.V. Zverev, I.S. Schedrin. Disk loaded waveguides: Handbook. M.: “Energoizdat”, 1991 (in Russian). 9. G.A. Loew, R.H. Miller, R.A. Early, K.L. Bane // IEEE Trans. Nucl. Sci. 1979, NS-26, p.3701. ПАРАМЕТРЫ ПУЧКА ЛИНЕЙНОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ 10–см ДИАПАЗОНА НА ЭНЕРГИЮ 30…100 MэВ A.Н. Довбня, Н.И. Айзацкий, В.Н. Борискин, И.В. Ходак, В.A. Кушнир, В.В. Митроченко, А.Н. Опанасенко, С.A. Пережогин, Л.В. Репринцев, А.Н. Савченко, Д.Л. Степин, В.И. Taтанов, В.Ф. Жигло В ННЦ ХФТИ создан линейный ускоритель электронов 10-см диапазона на энергию 30…100 MэВ. Уско- ритель состоит из двух кусочно-однородных четырехметровых ускоряющих секций. СВЧ-питание каждой секции осуществляется от клистрона КИУ-12AM. Особенностью линейного ускорителя является использо- вание инжектора, основанного на нераспространяющихся колебаниях. Приведены результаты измерения па- раметров пучка на выходе ускорителя. ПАРАМЕТРИ ПУЧКА ЛІНІЙНОГО ПРИСКОРЮВАЧА ЕЛЕКТРОНІВ 10-см ДІАПАЗОНУ З ЕНЕГІЄЮ 30…100 МеВ A.М. Довбня, М.І. Айзацький, В.М. Борискін, І.В. Ходак, В.A. Кушнір, В.В. Митроченко, А.М. Опанасенко, С.О. Пережогін, Л.В. Репринцев, А.М. Савченко, Д.Л. Стьопін, В.І. Taтанов, В.Ф. Жигло Наведені результати вимірювання параметрів пучка на виході створеного в ННЦ ХФТІ прискорювача електронів. Прискорювач складається з двох кусково-однорідних чотирьохметрових прискорювальних ___________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2. Series: Nuclear Physics Investigations (46), p.11-13. 11 секцій. Живлення кожної секції здійснюється від клістрона КІУ-12АМ. Особливістю прискорювача є застосування інжектора, заснованого на коливаннях, що не розповсюджуються. 12 ПАРАМЕТРЫ ПУЧКА ЛИНЕЙНОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ 10–см ДИАПАЗОНА НА ЭНЕРГИЮ 30…100 MэВ параметри пучка лінійного прискорювача електронів 10-см діапазону з енегією 30…100 Мев