Beam parameters of an S-band electron linac with beam energy of 30…100 MeV
An S-band electron linac has been erected at the NSC KIPT to cover an energy range from 30 to about of 100 MeV. The linac consists of a couple of four-meter long piecewise homogeneous accelerating sections. Each section is supplied with RF power from a separate klystron KIU-12AM. The feature of th...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , , , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2006
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/78514 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Beam parameters of an S-band electron linac with beam energy of 30…100 MeV / A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, A.N. Opanasenko, S.A. Perezhogin, L.V. Reprintsev, A.N. Savchenko, D.L. Stepin, V.I. Tatanov, V.F. Zhiglo // Вопросы атомной науки и техники. — 2006. — № 2. — С. 11-13. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-78514 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-785142015-03-19T03:01:55Z Beam parameters of an S-band electron linac with beam energy of 30…100 MeV Dovbnya, A.N. Aizatsky, M.I. Boriskin, V.N. Kushnir, V.A. Mytrochenko, V.V. Opanasenko, A.N. Perezhogin, S.A. Reprintsev, L.V. Savchenko, A.N. Stepin, D.L. Tatanov, V.I. Zhiglo, V.F. Линейные ускорители заряженных частиц An S-band electron linac has been erected at the NSC KIPT to cover an energy range from 30 to about of 100 MeV. The linac consists of a couple of four-meter long piecewise homogeneous accelerating sections. Each section is supplied with RF power from a separate klystron KIU-12AM. The feature of the linac is in the use of an injector based on evanescent oscillations. Results of beam parameters’ measurement of at the linac exit are presented. В ННЦ ХФТИ создан линейный ускоритель электронов 10-см диапазона на энергию 30…100 MэВ. Уско- ритель состоит из двух кусочно-однородных четырехметровых ускоряющих секций. СВЧ-питание каждой секции осуществляется от клистрона КИУ-12AM. Особенностью линейного ускорителя является использо- вание инжектора, основанного на нераспространяющихся колебаниях. Приведены результаты измерения па- раметров пучка на выходе ускорителя. Наведені результати вимірювання параметрів пучка на виході створеного в ННЦ ХФТІ прискорювача електронів. Прискорювач складається з двох кусково-однорідних чотирьохметрових прискорювальних секцій. Живлення кожної секції здійснюється від клістрона КІУ-12АМ. Особливістю прискорювача є застосування інжектора, заснованого на коливаннях, що не розповсюджуються. 2006 Article Beam parameters of an S-band electron linac with beam energy of 30…100 MeV / A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko, A.N. Opanasenko, S.A. Perezhogin, L.V. Reprintsev, A.N. Savchenko, D.L. Stepin, V.I. Tatanov, V.F. Zhiglo // Вопросы атомной науки и техники. — 2006. — № 2. — С. 11-13. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 41.75.Ht, 25.20.-x http://dspace.nbuv.gov.ua/handle/123456789/78514 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Линейные ускорители заряженных частиц Линейные ускорители заряженных частиц |
spellingShingle |
Линейные ускорители заряженных частиц Линейные ускорители заряженных частиц Dovbnya, A.N. Aizatsky, M.I. Boriskin, V.N. Kushnir, V.A. Mytrochenko, V.V. Opanasenko, A.N. Perezhogin, S.A. Reprintsev, L.V. Savchenko, A.N. Stepin, D.L. Tatanov, V.I. Zhiglo, V.F. Beam parameters of an S-band electron linac with beam energy of 30…100 MeV Вопросы атомной науки и техники |
description |
An S-band electron linac has been erected at the NSC KIPT to cover an energy range from 30 to about of
100 MeV. The linac consists of a couple of four-meter long piecewise homogeneous accelerating sections. Each section
is supplied with RF power from a separate klystron KIU-12AM. The feature of the linac is in the use of an injector
based on evanescent oscillations. Results of beam parameters’ measurement of at the linac exit are presented. |
format |
Article |
author |
Dovbnya, A.N. Aizatsky, M.I. Boriskin, V.N. Kushnir, V.A. Mytrochenko, V.V. Opanasenko, A.N. Perezhogin, S.A. Reprintsev, L.V. Savchenko, A.N. Stepin, D.L. Tatanov, V.I. Zhiglo, V.F. |
author_facet |
Dovbnya, A.N. Aizatsky, M.I. Boriskin, V.N. Kushnir, V.A. Mytrochenko, V.V. Opanasenko, A.N. Perezhogin, S.A. Reprintsev, L.V. Savchenko, A.N. Stepin, D.L. Tatanov, V.I. Zhiglo, V.F. |
author_sort |
Dovbnya, A.N. |
title |
Beam parameters of an S-band electron linac with beam energy of 30…100 MeV |
title_short |
Beam parameters of an S-band electron linac with beam energy of 30…100 MeV |
title_full |
Beam parameters of an S-band electron linac with beam energy of 30…100 MeV |
title_fullStr |
Beam parameters of an S-band electron linac with beam energy of 30…100 MeV |
title_full_unstemmed |
Beam parameters of an S-band electron linac with beam energy of 30…100 MeV |
title_sort |
beam parameters of an s-band electron linac with beam energy of 30…100 mev |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2006 |
topic_facet |
Линейные ускорители заряженных частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/78514 |
citation_txt |
Beam parameters of an S-band electron linac with beam energy of 30…100 MeV / A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko,
A.N. Opanasenko, S.A. Perezhogin, L.V. Reprintsev, A.N. Savchenko, D.L. Stepin,
V.I. Tatanov, V.F. Zhiglo // Вопросы атомной науки и техники. — 2006. — № 2. — С. 11-13. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT dovbnyaan beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT aizatskymi beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT boriskinvn beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT kushnirva beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT mytrochenkovv beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT opanasenkoan beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT perezhoginsa beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT reprintsevlv beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT savchenkoan beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT stepindl beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT tatanovvi beamparametersofansbandelectronlinacwithbeamenergyof30100mev AT zhiglovf beamparametersofansbandelectronlinacwithbeamenergyof30100mev |
first_indexed |
2025-07-06T02:35:16Z |
last_indexed |
2025-07-06T02:35:16Z |
_version_ |
1836863262878072832 |
fulltext |
BEAM PARAMETERS OF AN S-BAND ELECTRON LINAC
WITH BEAM ENERGY OF 30…100 MeV
A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin, I.V. Khodak, V.A. Kushnir, V.V. Mytrochenko,
A.N. Opanasenko, S.A. Perezhogin, L.V. Reprintsev, A.N. Savchenko, D.L. Stepin,
V.I. Tatanov, V.F. Zhiglo
NSC KIPT, Kharkov, Ukraine
E-mail: mitvic@kipt.kharkov.ua
An S-band electron linac has been erected at the NSC KIPT to cover an energy range from 30 to about of
100 MeV. The linac consists of a couple of four-meter long piecewise homogeneous accelerating sections. Each sec-
tion is supplied with RF power from a separate klystron KIU-12AM. The feature of the linac is in the use of an in-
jector based on evanescent oscillations. Results of beam parameters’ measurement of at the linac exit are presented.
PACS: 41.75.Ht, 25.20.-x
1. INTRODUCTION
Studies into photonuclear reactions on light nuclei
require information on a photon flux with fixed value of
maximum energy. This photon flux can be obtained by
an electron linac. The research linac that will be used
for the above-mentioned purpose has been designed and
constructed at the NSC KIPT. The linac can be used also
for investigations into numerous physical phenomena
connected with interaction of relativistic electron beams
with electrodynamic systems and condensed media. De-
scription of the linac is given in Ref. [1]. The linac con-
sists of an injector, two piece-wise homogeneous accel-
erating sections and beam transport system. The injector
consists of a 25 keV diode electron gun and buncher on
a basis of a resonance system with evanescent oscilla-
tions [2]. The linac is now commissioning and the first
results of beam measurements have been obtained. Sim-
ulation results of self-consistent particle dynamics in the
linac obtained by using the PARMELA code [3] and
technique [4] are compared with the experimental re-
sults.
2. SIMULATIONS
The chain of five coupled E010 cavities is used as a
resonant system of the injector. The cavities are coupled
through the central apertures for beam passing. For real-
ization of the required on-axis field distribution, the in-
jector operating frequency close to the eigenfrequency
of the last cavity was chosen higher than frequency of
the «π»-mode of a homogeneous part of the resonance
system (from the second to fourth cavities). For such sit-
uation the phase advance of the field per cell remains
equal π, while field amplitude drops rapidly from the
fifth cell to the first one.
The dispenser oxide cathode with a radius of 2.5 mm
and curvature radius of 7.5 mm is used in the electron
gun of the injector. The optical system of the gun was
designed with the EGUN code [5]. The final choice of
electrode shapes was made taking into account the beam
dynamics in the injector because the calculations
showed that both the beam size in a waist and the waist
position influence the bunching due to the space charge
forces.
Simulation of particle dynamics in the injector was
performed with the PARMELA code. To study the self-
consistent task, the technique [4] was used. Example of
simulation results for a case, when duration of current
pulse was longer than that of the RF pulse is shown in
Fig.1.
Fig.1. On-axis field (1) and output current (2) (on the
left), pulses of incident and reflected powers in the RF
feeder of the injector (on the right)
The choice of a linac structure has been made by us-
ing simulation results of self-consistent transient dy-
namics of particles in traveling wave accelerating sec-
tions obtained with method [6]. Taking into account
simulation results and available resources, we stopped
our choice on a linac structure that includes two four-
meter long «Kharkov-85» sections [7]. The sections are
piece-wise homogeneous disc loaded waveguides con-
sisting of four pieces with a constant impedance. Each
piece matches with subsequent one through five transi-
tional cells. Total cell number per section is 162, phase
advance is 90° per cell, and operating frequency is
2797.15 MHz. Electrodynamic characteristics of these
sections were calculated both by data interpolation [8]
and using the method from Ref. [9]. Both methods gave
the similar results. Calculated values of series
impedance of the first, second, third and fourth pieces of
the sections are equal to 1082, 1430, 1943 and
2930 Ohm/cm2, accordingly. The values for filling time
and attenuation of the whole sections are 0.92 µs and
0.68 Neper, correspondently. Previously, these sections
had been used as a part of the LUE-2000 linac [7]. Be-
fore their usage in the designed linac, the electrodynam-
ic characteristics of these sections were tested. Having
obtained the refined data, numerical simulation of self-
consistent beam dynamics was performed with tech-
nique [4]. Between the injector and the first accelerating
___________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.11-13. 11
section an adjustable collimator is installed to cover a
wide range of accelerated currents preserving conditions
for bunching. Thus, a required output current of the
linac was obtained in simulations by using beam colli-
mations. Plots of mean particle energy W, energy spread
∆W/W and phase extent ∆ϕ of bunches versus time
within a current pulse duration are shown in Fig.3. Ac-
celerated current was 63 mA, RF power supply of the in-
jector and each accelerating section were 1.2 MW and
16 MW, respectively. RF pulses were flat-toped. One can
see the change of the mean energy by 3 MeV during the
pulse due to the beam loading at the accelerated current.
3. EXPERIMENTAL STUDY OF BEAM
CHARACTERISTICS
The experimental study of the injector with a beam
was carried out on the special stand that provides the RF
power supply to the resonance system, high voltage and
filament supplies to the electron gun as well as beam
characteristics’ measurements.
Measured dependence of a beam emittance ε, beam
energy, and energy spread on feeding RF power is
shown in Fig.2. Beam emittance was evaluated from a
set of full width on a half of magnitude of beam trans-
verse spot size obtained under quadrupole scan. Energy
spread was determined by 90° bending magnet. The
measured and expected parameters of the injector are
presented in Table 1.
Fig.2. Dependence of beam characteristics on feeding
RF power
Table 1. Specifications of the injector
Parameter Measured Expected
Gun high voltage, kV -25 -25
Cathode radius, mm 2.5 2.5
Beam waist, mm 1.4 2.2
Gun current, A 0.22 0.22
Operating frequency, MHz 2797.15 2797.15
Unloaded quality factor 11000 12298
Shunt impedance, MOhm/m 15 18.6
Coupling with the feeder 4.6 −
Incident power, MW 1.2±0.1 0.75
Injector current, A 0.16 0.191
εn x,y, π⋅mm⋅mrad 10 15
∆ϕ, ° (70% of particles) − 22
W, keV 900 850
∆W/W, % (FWHM) 2.6 2.3
Measured beam parameters are consistent with sim-
ulated ones. Discrepancy in measured and expected in-
cident power is due to some uncertainty in power mea-
surement, on the one hand, and some uncertainty of
shunt impedance measured, on the other hand. For bead-
pull measurements of the on-axis field pattern with large
difference in field amplitude along the axis the bead
should be large enough. It results in overestimation of
the shunt impedance because of field integration over
the bead.
After the injector had been studied, it was joined
with the accelerating sections (see Fig.3).
Fig.3. The injector (top) joined wit the accelerating sec-
tions (bottom)
For diminishing the change, the HV pulse of the
klystron feeding the second section was distorted to
have some rise of output power to the end of RF pulse.
The measured beam spectrum at the current is shown in
Fig.5. One can clearly notice that time and value of tran-
sitional process is diminished slightly.
Fig.4. Simulated beam characteristics
At the first test of the linac the beam transversal
emittance was measured by the quadrupole scan
method. Fig.6 shows the dependence of a horizontal
beam profile width on a quadrupole current. Similar de-
pendence was measured for the vertical profile. Data
processing gave the values of normalized emittance that
are listed in Table 2. There are other measured and cal-
culated beam parameters at the exit of the linac enumer-
ated in Table 2 for comparison.
10
Fig.5. Contour plot of measured energy spectrum
Fig.6. Results of the quadrupole scan
Table 2. Beam parameters at the linac exit
Parameter Expected Measured
Pulsed current, мА 63 30…120
W, MeV 95 50…00
∆W/W, % (FWHM) 1.4 1.5
∆ϕ , ° (70% of particles) 15
∆x, ∆y at the target
(FWHM), mm
0.1, 0.1 0.44, 0.68
εn x, y, π⋅mm⋅mrad 6, 6 63, 72
The measured values of the transversal beam emit-
tance are much lower as compared to that of linacs with
conventional injector type. Therewith, the comparison
of the simulated results of particle dynamics with the
first experimental data on beam characteristics shows
reserve for the beam improvement. In particular, it con-
cerns the transversal beam emittance. Ongoing research
activities at the linac have an ultimate goal in develop-
ment of a reliable scheme for computer control of beam
energy as well as in equipment checkout and beam pa-
rameters improvement.
CONCLUSION
Two-sectional electron linac with beam energy of
100 MeV and current of 120 mA has been developed
and constructed at the NSC KIPT. Relatively low value
of the transversal beam emittance allows obtaining high
beam density on a target. We intend to conduct inten-
sive researches of bunch forming to diminish the
transversal emittance to the value predicted by calcula-
tions. At the same time it is planned to carry out re-
searches of photonuclear reactions on lights nuclei in
the nearest future.
REFERENSES
1. K.I. Antipov, M.I. Aizatsky, Yu.I. Akchurin et al. //
Problems of Atomic Science and Technology. Se-
ries: Nuclear Physics Investigations. 2004, №5,
p.135.
2. M.I. Aizatsky, E.Z. Biller, N.G. Golovko et al. //
Problems of Atomic Science and Technology. Se-
ries: Nuclear Physics Investigations. 2004, №1(42),
p.60.
3. L.M. Young, “PARMELA”. LA-UR-96-1835. Los
Alamos, 1996.
4. A.N. Opanasenko, V.V. Mitrochenko. Simulation
Technique for Study of Transient Self-consistent
Beam Dynamics in RF Linacs. Proc. of EPAC 2004,
Lucerne. 2004, p.2792.
5. W.B. Herrmannsfeldt. EGUN: Electron Optics Pro-
gram. SLAC-PUB-6729. Stanford Linear Accelera-
tor Center, 1994.
6. M.I. Aizatsky. Nonstationary Model for Beam Dy-
namic Simulation in Multisectional Accelerators //
Proc. of EPAC 98, Stockholm. 1998, p.1159.
7. E.Z. Biller, A.N. Dovbhya, V.A. Kushnir et al. //
Part. Accel. 1990, №.27, p.119.
8. O.A. Valdner, N.P Sobenin, B.V. Zverev,
I.S. Schedrin. Disk loaded waveguides: Handbook.
M.: “Energoizdat”, 1991 (in Russian).
9. G.A. Loew, R.H. Miller, R.A. Early, K.L. Bane //
IEEE Trans. Nucl. Sci. 1979, NS-26, p.3701.
ПАРАМЕТРЫ ПУЧКА ЛИНЕЙНОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ 10–см ДИАПАЗОНА
НА ЭНЕРГИЮ 30…100 MэВ
A.Н. Довбня, Н.И. Айзацкий, В.Н. Борискин, И.В. Ходак, В.A. Кушнир, В.В. Митроченко, А.Н. Опанасенко,
С.A. Пережогин, Л.В. Репринцев, А.Н. Савченко, Д.Л. Степин, В.И. Taтанов, В.Ф. Жигло
В ННЦ ХФТИ создан линейный ускоритель электронов 10-см диапазона на энергию 30…100 MэВ. Уско-
ритель состоит из двух кусочно-однородных четырехметровых ускоряющих секций. СВЧ-питание каждой
секции осуществляется от клистрона КИУ-12AM. Особенностью линейного ускорителя является использо-
вание инжектора, основанного на нераспространяющихся колебаниях. Приведены результаты измерения па-
раметров пучка на выходе ускорителя.
ПАРАМЕТРИ ПУЧКА ЛІНІЙНОГО ПРИСКОРЮВАЧА ЕЛЕКТРОНІВ 10-см ДІАПАЗОНУ
З ЕНЕГІЄЮ 30…100 МеВ
A.М. Довбня, М.І. Айзацький, В.М. Борискін, І.В. Ходак, В.A. Кушнір, В.В. Митроченко, А.М. Опанасенко,
С.О. Пережогін, Л.В. Репринцев, А.М. Савченко, Д.Л. Стьопін, В.І. Taтанов, В.Ф. Жигло
Наведені результати вимірювання параметрів пучка на виході створеного в ННЦ ХФТІ прискорювача
електронів. Прискорювач складається з двох кусково-однорідних чотирьохметрових прискорювальних
___________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2006. № 2.
Series: Nuclear Physics Investigations (46), p.11-13. 11
секцій. Живлення кожної секції здійснюється від клістрона КІУ-12АМ. Особливістю прискорювача є
застосування інжектора, заснованого на коливаннях, що не розповсюджуються.
12
ПАРАМЕТРЫ ПУЧКА ЛИНЕЙНОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ 10–см ДИАПАЗОНА
НА ЭНЕРГИЮ 30…100 MэВ
параметри пучка лінійного прискорювача електронів 10-см діапазону з енегією 30…100 Мев
|