Monitoring position of the electron beam in the air
A possibility of operative control position of the electron beam with energy up to 30 MeV, pulse current up to 1 A with 3.5 pulse length and operate frequency from 50 to 300 Hz at the exit of two-structure linac has been investigated. The zone of technological objects irradiated by accelerated ele...
Gespeichert in:
Datum: | 2004 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2004
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/78702 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Monitoring position of the electron beam in the air / V.N. Boriskin, V.A. Gurin, V.A. Popenko, O.A. Repihov, A.N. Savchenko, V.I. Tatanov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 74-76. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-78702 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-787022015-03-21T03:01:48Z Monitoring position of the electron beam in the air Boriskin, V.N. Gurin, V.A. Popenko, V.A. Repihov, O.A. Savchenko, A.N Tatanov, V.I Элементы ускорителей A possibility of operative control position of the electron beam with energy up to 30 MeV, pulse current up to 1 A with 3.5 pulse length and operate frequency from 50 to 300 Hz at the exit of two-structure linac has been investigated. The zone of technological objects irradiated by accelerated electrons is created with the magnet system. The irradiated samples are situated in the ambient air of the linac bunker. Special secondary-emission monitor is developed for the operative control of the beam position on the target. The monitor signals are used by the linac control system. Досліджується можливість оперативного контролю положення пучка електронів на виході двосекційного лінійного прискорювача електронів (ЛПЕ) енергією до 30 МеВ з імпульсним струмом до 1 А тривалості 3.5 мкс і робочою частотою 50...300 Гц. Створення зони опромінення технологічних об’єктів прискореними електронами здійснюється магнітною системою. Опромінюванні об’єкти розміщуються у воздушній атмосфері бункера ЛПЕ. Для оперативного контролю положення пучка на мішені розроблено спеціальний монітор вторинної емісії. Сигнали з монітора використовуються в системі управління прискорювачем. Исследуется возможность оперативного контроля положения пучка электронов на выходе двухсекционного линейного ускорителя электронов (ЛУЭ) энергией до 30 МэВ, с импульсным током до 1 А длительностью 3,5 мкс и рабочей частотой 50...300 Гц. Создание зоны облучения технологических объектов ускоренными электронами осуществляется магнитной системой. Облучаемые объекты расположены в воздушной атмосфере в бункере ЛУЭ. Для оперативного контроля положения пучка на мишени разработан специальный монитор вторичной эмиссии. Сигналы с монитора используются в системе управления ускорителем. 2004 Article Monitoring position of the electron beam in the air / V.N. Boriskin, V.A. Gurin, V.A. Popenko, O.A. Repihov, A.N. Savchenko, V.I. Tatanov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 74-76. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 29.27.Eg http://dspace.nbuv.gov.ua/handle/123456789/78702 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Элементы ускорителей Элементы ускорителей |
spellingShingle |
Элементы ускорителей Элементы ускорителей Boriskin, V.N. Gurin, V.A. Popenko, V.A. Repihov, O.A. Savchenko, A.N Tatanov, V.I Monitoring position of the electron beam in the air Вопросы атомной науки и техники |
description |
A possibility of operative control position of the electron beam with energy up to 30 MeV, pulse current up to
1 A with 3.5 pulse length and operate frequency from 50 to 300 Hz at the exit of two-structure linac has been
investigated. The zone of technological objects irradiated by accelerated electrons is created with the magnet
system. The irradiated samples are situated in the ambient air of the linac bunker. Special secondary-emission
monitor is developed for the operative control of the beam position on the target. The monitor signals are used by
the linac control system. |
format |
Article |
author |
Boriskin, V.N. Gurin, V.A. Popenko, V.A. Repihov, O.A. Savchenko, A.N Tatanov, V.I |
author_facet |
Boriskin, V.N. Gurin, V.A. Popenko, V.A. Repihov, O.A. Savchenko, A.N Tatanov, V.I |
author_sort |
Boriskin, V.N. |
title |
Monitoring position of the electron beam in the air |
title_short |
Monitoring position of the electron beam in the air |
title_full |
Monitoring position of the electron beam in the air |
title_fullStr |
Monitoring position of the electron beam in the air |
title_full_unstemmed |
Monitoring position of the electron beam in the air |
title_sort |
monitoring position of the electron beam in the air |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2004 |
topic_facet |
Элементы ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/78702 |
citation_txt |
Monitoring position of the electron beam in the air / V.N. Boriskin, V.A. Gurin, V.A. Popenko, O.A. Repihov, A.N. Savchenko, V.I. Tatanov // Вопросы атомной науки и техники. — 2004. — № 1. — С. 74-76. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT boriskinvn monitoringpositionoftheelectronbeamintheair AT gurinva monitoringpositionoftheelectronbeamintheair AT popenkova monitoringpositionoftheelectronbeamintheair AT repihovoa monitoringpositionoftheelectronbeamintheair AT savchenkoan monitoringpositionoftheelectronbeamintheair AT tatanovvi monitoringpositionoftheelectronbeamintheair |
first_indexed |
2025-07-06T02:46:20Z |
last_indexed |
2025-07-06T02:46:20Z |
_version_ |
1836863959678844928 |
fulltext |
MONITORING POSITION OF THE ELECTRON BEAM
IN THE AIR
V.N. Boriskin, V.A. Gurin, V.A. Popenko, O.A. Repihov, A.N. Savchenko, V.I. Tatanov
NSC KIPT
A possibility of operative control position of the electron beam with energy up to 30 MeV, pulse current up to
1 A with 3.5 pulse length and operate frequency from 50 to 300 Hz at the exit of two-structure linac has been
investigated. The zone of technological objects irradiated by accelerated electrons is created with the magnet
system. The irradiated samples are situated in the ambient air of the linac bunker. Special secondary-emission
monitor is developed for the operative control of the beam position on the target. The monitor signals are used by
the linac control system.
PACS: 29.27.Eg
1. CONSTRUCTION OF THE MONITOR
The beam profile monitor consists of four
aluminium lames of 80 mm width and 0.15 mm thick.
(Fig.1). The lames are locked in the cadre. The inner
spacing between the lames is dictated by size of
irradiated sample.
Fig 1. The monitor structure scheme.
R is the matching resistance in the end of
the coaxial cable, RL is the resistance RK75
cable, РС is the personal computer,
ADC is the digitizer
In our case the inner monitor window measures
205x93 mm. The lame planes are parallel to one another
and perpendicular to the optical axis of the accelerator.
In high-energy electron passage through the lames, the
positive signal comes due to emission of secondary
delta-electron. The monitor signal with an amplitude no
more than 800 mV (Fig.1) by the RK75 cable 40 m in
length is fed through commutator to the digitizer entry
[3]. Simplicity of the monitor construction is
conditioned by the high level of induced activated
radiation in the working zone. The employment of the
traditional collector electrode with accelerating potential
was not necessary for electron beams we used [4,5]. The
monitor is installed in the air at a distance 450 mm from
the plane of the accelerator exhaust foil.
The center of the inner monitor window is integrated
with the optical axis of the accelerator by the use of the
special screws.
In the air a relationship between a charge on the
beam profile monitor lames and primary beam intensity
may be not linear as a result of deposition of charge
atmosphere particles and secondary electrons with low
energy on the lames.
Fig.2. Videogram of the monitor signal
measurement
However in our case these effects have insignificant
impact. In the work [5] we showed that at the energy
range covered the secondary emission current from
aluminium lames is directly proportional to the electron
beam charge. The secondary emission coefficient is
3.1%. The pulse signal train from the monitor lames is
given in Fig.2. The pulse area is directly proportional to
total charge of electrons captured by monitor lames
2. MONITORING OVER THE POSITION OF
THE ELECTRON BEAM ON THE TARGET
The quadrupole lens forms the zone of irradiation
for technological objects of the accelerator KUT-20
exit. [2]. The beam electron section after lens is ellipse
shaped in the XY plane.
Fig.3. Glass darkening by the action of the
electron pulse train of the accelerator “KUT-20”.
The glass is situated in the monitor plane
(450 mm from exhaust foil)
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1.
Series: Nuclear Physics Investigations (42), p.74-76.
74
Fig.4. 2D- darkening density distribution on the
glass by the action of the electron pulse train of
the accelerator “KUT-20” in a monitor plane
(450 mm from exhaust foil)
To estimate section ellipse dimensions of the beam
in the monitor plane we used the photometric method.
The result of the photometric measurement of the beam
electron distribution density is shown in Fig.3-5. The
thickness of the glass used for photometry was 3 mm.
To perform the quantitative estimation of the beam
electron distribution density the skanner EPSON 1660 is
used.
Fig.5. 3D- darkening density distribution on
the glass by the action of the electron pulse train
of the accelerator “KUT-20” in the monitor plane
(450 mm from exhaust foil)
We customary suggest that glass darkening is linear
with the beam electron quantity at short exposure.
Results shown in Fig.3-5 were obtained at the 0.6 A
pulse current (pulse quantity was equaled 400). In the
solution with the distance L it is neccesary to allow for
the following relationship :
(Dy – H) < W1,
(Dx – H) < W1.
The quantity L is equal to 450 mm for basic
operating conditions of the “Kut-20” accelerator. In
Fig.6 it is seen that the beam centre was offseted top and
right relative to the accelerator axis. The accelerator
control system [3] is accumulating in PC memory
numerical values of a pulse series from the monitor
lames with discreteness per 100 ns on the accelerator
operator command. After that average integrated values
of signals are calculated. This values multiplied by
normalizing coefficients are demonstrated on the
operator display in graphic and numerical forms.
0
50
100
150
200
250
1 21 41 61 81 101 121 141 161 181
+Y dY мм -Y
Q
(о
тн
.е
д.
)
0
50
100
150
200
250
1 21 41 61 81 101 121 141 161 181 201 221 241 261
+X dX мм -X
Q
(о
тн
.е
д.
)
Fig.6. The distribution density (Q) of the glass
darkening under the action of the electron pulse
train of the accelerator “KUT-20”. The top figure
presents the cross-section in the YZ plane and the
bottom figure presents the cross-section in the XZ
plane. The disposition of the monitor lames is
marked by hatching. The accelerator axis (Z) is
shown by dot-dash lines
Fig.7. Videogram of the monitoring over the
position of the electron beam on the target of the
accelerator “KUT-20”
SUMMARY
On-the line channel of measuring the beam position
has been in successful operation during many years as a
part of the linac “KUT-20” control system. Authors are
grateful to M.I. Ayzatsky, A.N. Dovbnya, V.A. Kushnir
and V.L. Uvarov for the helpful discussion.
REFERENCE
1. M.I. Ayzatsky, V.N. Boriskin, A.M. Dovbnya et al.
The NSC KIPT Electron Linacs –R&D // Problems
of Atomic Science and Technology. Series:
___________________________________________________________
PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 1.
Series: Nuclear Physics Investigations (42), p.74-76.
75
“Nuclear Physics Investigations” (41). 2003, № 2,
p. 19-24.
2. A.N.Dovbnya, N.A.Dovbnya, Z.M.Kolot et al.
Formation of Uniform Electron Beams on Large-
Area Targets // Proc. of the 18th International
Workshop on Charged Particle Accelerators, 2003.
3. Yr.I. Akchurin, V.N. Boriskin, Yr.V. Borgkovsky,
V.A. Gurin et al. Control system by the
technological electron linac KUT-20 // Problems of
Atomic Science and Technology. Series: “Nuclear
Physics Investigations” (38). 2001, № 3, p.126-
127.
4. V.A.Golshteyn, V.G.Vlasenko, S.V.Dementij et al.
Research of the secondary emission monitors on
the LAE-2000 electron beam: Рreprint KIPT 72-14,
Kharkov, 1972, p.27.
5. V.N. Boriskin, V.A. Gurin, V.A. Popenko et al.
Monitoring channel of the technological linac beam
cross-section // Problems of Atomic Science and
Technology. Series:” Nuclear Physics
Investigations” (39). 2001, № 5, p.147-149.
ОПЕРАТИВНЫЙ КОНТРОЛЬ ПОЛОЖЕНИЯ ПУЧКА ЭЛЕКТРОНОВ В АТМОСФЕРЕ
В.Н. Борискин, В.А. Гурин, В.А. Попенко, О.А. Репихов, А.Н. Савченко, В.И. Татанов
Исследуется возможность оперативного контроля положения пучка электронов на выходе
двухсекционного линейного ускорителя электронов (ЛУЭ) энергией до 30 МэВ, с импульсным током до 1 А
длительностью 3,5 мкс и рабочей частотой 50...300 Гц. Создание зоны облучения технологических объектов
ускоренными электронами осуществляется магнитной системой. Облучаемые объекты расположены в
воздушной атмосфере в бункере ЛУЭ. Для оперативного контроля положения пучка на мишени разработан
специальный монитор вторичной эмиссии. Сигналы с монитора используются в системе управления
ускорителем.
ОПЕРАТИВНИЙ КОНТРОЛЬ ПОЛОЖЕННЯ ПУЧКА ЭЛЕКТРОНІВ В АТМОСФЕРІ
В.М. Борискін, В.О. Гурін, В.А. Попенко, О.А. Репіхов, А.М. Савченко, В.И. Татанов
Досліджується можливість оперативного контролю положення пучка електронів на виході двосекційного
лінійного прискорювача електронів (ЛПЕ) енергією до 30 МеВ з імпульсним струмом до 1 А тривалості
3.5 мкс і робочою частотою 50...300 Гц. Створення зони опромінення технологічних об’єктів прискореними
електронами здійснюється магнітною системою. Опромінюванні об’єкти розміщуються у воздушній
атмосфері бункера ЛПЕ. Для оперативного контролю положення пучка на мішені розроблено спеціальний
монітор вторинної емісії. Сигнали з монітора використовуються в системі управління прискорювачем.
76
REFERENCE
|